Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 6, Pages 756–782
DOI: https://doi.org/10.1070/SM9119
(Mi sm9119)
 

This article is cited in 24 scientific papers (total in 24 papers)

A smooth version of Johnson's problem on derivations of group algebras

A. A. Arutyunova, A. S. Mishchenkob

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We give a description of the algebra of outer derivations of the group algebra of a finitely presented discrete group in terms of the Cayley complex of the groupoid of the adjoint action of the group. This problem is a smooth version of Johnson's problem on derivations of a group algebra. We show that the algebra of outer derivations is isomorphic to the one-dimensional compactly supported cohomology group of the Cayley complex over the field of complex numbers.
Bibliography: 34 titles.
Keywords: derivations, group algebras, groupoids, Cayley complexes, Hochschild cohomology.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00398-а
This research was supported by the Russian Foundation for Basic Research (grant no. 18-01-00398-a).
Received: 03.04.2018 and 06.12.2018
Bibliographic databases:
Document Type: Article
UDC: 512.552.16+515.146.3
MSC: Primary 16W25; Secondary 16E40, 16S34, 20C05, 20C07
Language: English
Original paper language: Russian
Citation: A. A. Arutyunov, A. S. Mishchenko, “A smooth version of Johnson's problem on derivations of group algebras”, Sb. Math., 210:6 (2019), 756–782
Citation in format AMSBIB
\Bibitem{AruMis19}
\by A.~A.~Arutyunov, A.~S.~Mishchenko
\paper A~smooth version of Johnson's problem on derivations of group algebras
\jour Sb. Math.
\yr 2019
\vol 210
\issue 6
\pages 756--782
\mathnet{http://mi.mathnet.ru//eng/sm9119}
\crossref{https://doi.org/10.1070/SM9119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954336}
\zmath{https://zbmath.org/?q=an:1439.16041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..756A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000482090700001}
\elib{https://elibrary.ru/item.asp?id=37652216}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072739919}
Linking options:
  • https://www.mathnet.ru/eng/sm9119
  • https://doi.org/10.1070/SM9119
  • https://www.mathnet.ru/eng/sm/v210/i6/p3
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:761
    Russian version PDF:120
    English version PDF:41
    References:47
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024