|
This article is cited in 10 scientific papers (total in 10 papers)
Smoothness of functions and Fourier coefficients
M. I. Dyachenkoa, A. B. Mukanovbcd, S. Yu. Tikhonovceb a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
c Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
d Kazakhstan Branch of Lomonosov Moscow State University, Astana, Kazakhstan
e Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
Abstract:
We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1<p<\infty$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory.
Bibliography: 34 titles.
Keywords:
Fourier series, general monotone sequences, moduli of smoothness.
Received: 08.03.2018 and 06.12.2018
Citation:
M. I. Dyachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of functions and Fourier coefficients”, Mat. Sb., 210:7 (2019), 94–119; Sb. Math., 210:7 (2019), 994–1018
Linking options:
https://www.mathnet.ru/eng/sm9096https://doi.org/10.1070/SM9096 https://www.mathnet.ru/eng/sm/v210/i7/p94
|
Statistics & downloads: |
Abstract page: | 633 | Russian version PDF: | 72 | English version PDF: | 21 | References: | 65 | First page: | 48 |
|