Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 7, Pages 994–1018
DOI: https://doi.org/10.1070/SM9096
(Mi sm9096)
 

This article is cited in 10 scientific papers (total in 10 papers)

Smoothness of functions and Fourier coefficients

M. I. Dyachenkoa, A. B. Mukanovbcd, S. Yu. Tikhonovceb

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
c Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
d Kazakhstan Branch of Lomonosov Moscow State University, Astana, Kazakhstan
e Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
References:
Abstract: We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1<p<\infty$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory.
Bibliography: 34 titles.
Keywords: Fourier series, general monotone sequences, moduli of smoothness.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00457-a
Ministry of Education and Science of the Republic of Kazakhstan AP05132590
AP05132071
Ministerio de Ciencia e Innovación de España MTM2017-87409-P
Generalitat de Catalunya 2017 SGR 358
M. I. Dyachenko's research was partially supported by the Russian Foundation for Basic Research (grant no. 19-01-00457-a) and the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP05132590). A. B. Mukanov's research was supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP05132071). S. Yu. Tikhonov's research was partially supported by Ministerio de Ciencia, Innovación y Universidades (grant no. MTM2017-87409-P) and Generalitat de Catalunya (2017 SGR 358).
Received: 08.03.2018 and 06.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.4+517.518.83
MSC: Primary 42A32; Secondary 26A16, 42A16, 46E35
Language: English
Original paper language: Russian
Citation: M. I. Dyachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of functions and Fourier coefficients”, Sb. Math., 210:7 (2019), 994–1018
Citation in format AMSBIB
\Bibitem{DyaMukTik19}
\by M.~I.~Dyachenko, A.~B.~Mukanov, S.~Yu.~Tikhonov
\paper Smoothness of functions and Fourier coefficients
\jour Sb. Math.
\yr 2019
\vol 210
\issue 7
\pages 994--1018
\mathnet{http://mi.mathnet.ru//eng/sm9096}
\crossref{https://doi.org/10.1070/SM9096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985723}
\zmath{https://zbmath.org/?q=an:1422.42006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..994D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485821800003}
\elib{https://elibrary.ru/item.asp?id=38487814}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073009303}
Linking options:
  • https://www.mathnet.ru/eng/sm9096
  • https://doi.org/10.1070/SM9096
  • https://www.mathnet.ru/eng/sm/v210/i7/p94
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:648
    Russian version PDF:75
    English version PDF:23
    References:68
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024