Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 82, Issue 2, Pages 271–292
DOI: https://doi.org/10.1070/SM1995v082n02ABEH003564
(Mi sm909)
 

On smoothness up to the boundary of solutions of parabolic equations with a degenerate operator

A. V. Babin, S. Zh. Kabakbaev

Moscow State University of Railway Communications
References:
Abstract: Parabolic equations $\partial_tu=-Au+f_0$, $ u|_{t=0}=f_1$ are considered that are of second order with a nonnegative quadratic form $a(x,\zeta)$ corresponding to the space variables. This form degenerates on the boundary: $a(x,\nu)=0$, where $\nu$ is the normal vectors, which corresponds to the condition of impermeability of the boundary. Special function spaces $E^s$ with weight are introduced. Semiboundedness of the operator $A$ in these spaces with arbitrary $s$ is proved: $(Av,v)_{E^s}\geqslant -C\|v\|_{E^s}^2$. On this basis theorems on the smoothness of solutions for $f_0,f_1\in E^s$ are proved. Theorems on the smoothness of solutions $u(x)$ of the elliptic equation $Au + \lambda u = f_0$ are also obtained.
Received: 24.08.1992
Bibliographic databases:
UDC: 517.95
MSC: 35K20, 35K65, 35B65
Language: English
Original paper language: Russian
Citation: A. V. Babin, S. Zh. Kabakbaev, “On smoothness up to the boundary of solutions of parabolic equations with a degenerate operator”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 271–292
Citation in format AMSBIB
\Bibitem{BabKab94}
\by A.~V.~Babin, S.~Zh.~Kabakbaev
\paper On smoothness up to the~boundary of solutions of parabolic equations with a~degenerate operator
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 82
\issue 2
\pages 271--292
\mathnet{http://mi.mathnet.ru//eng/sm909}
\crossref{https://doi.org/10.1070/SM1995v082n02ABEH003564}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1300130}
\zmath{https://zbmath.org/?q=an:0857.35069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RV83000002}
Linking options:
  • https://www.mathnet.ru/eng/sm909
  • https://doi.org/10.1070/SM1995v082n02ABEH003564
  • https://www.mathnet.ru/eng/sm/v185/i7/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025