Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 4, Pages 565–588
DOI: https://doi.org/10.1070/SM9068
(Mi sm9068)
 

This article is cited in 4 scientific papers (total in 4 papers)

Linear collective collocation approximation for parametric and stochastic elliptic PDEs

Dinh Dũng

Information Technology Institute, Vietnam National University, Hanoi, Vietnam
References:
Abstract: Consider the parametric elliptic problem
$$ -\operatorname{div}\bigl(a(y)(x)\nabla u(y)(x)\bigr)=f(x),\qquad x\in D,\quad y\in\mathbb I^\infty,\quad u|_{\partial D}=0, $$
where $D\subset\mathbb R^m$ is a bounded Lipschitz domain, $\mathbb I^\infty:=[-1,1]^\infty$, $f\in L_2(D)$, and the diffusion coefficients $a$ satisfy the uniform ellipticity assumption and are affinely dependent on $y$. The parameter $y$ can be interpreted as either a deterministic or a random variable. A central question to be studied is as follows. Assume that there is a sequence of approximations with a certain error convergence rate in the energy norm of the space $V:=H^1_0(D)$ for the nonparametric problem $-\operatorname{div}\bigl(a(y_0)(x)\nabla u(y_0)(x)\bigr)=f(x)$ at every point $y_0\in\mathbb I^\infty$. Then under what assumptions does this sequence induce a sequence of approximations with the same error convergence rate for the parametric elliptic problem in the norm of the Bochner spaces $L_\infty(\mathbb I^\infty,V)$? We have solved this question using linear collective collocation methods, based on Lagrange polynomial interpolation on the parametric domain $\mathbb I^\infty$. Under very mild conditions, we show that these approximation methods give the same error convergence rate as for the nonparametric elliptic problem. In this sense the curse of dimensionality is broken by linear methods.
Bibliography: 22 titles.
Keywords: high-dimensional problems, parametric and stochastic elliptic PDEs, linear collective collocation approximation, affine dependence of the diffusion coefficients.
Funding agency Grant number
National Foundation for Science and Technology Development Vietnam 102.01-2017.05
This work was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 102.01-2017.05.
Received: 19.01.2018 and 27.05.2018
Bibliographic databases:
Document Type: Article
UDC: 517.954+517.518
Language: English
Original paper language: Russian
Citation: Dinh Dũng, “Linear collective collocation approximation for parametric and stochastic elliptic PDEs”, Sb. Math., 210:4 (2019), 565–588
Citation in format AMSBIB
\Bibitem{Din19}
\by Dinh~D{\~ u}ng
\paper Linear collective collocation approximation for parametric and stochastic elliptic PDEs
\jour Sb. Math.
\yr 2019
\vol 210
\issue 4
\pages 565--588
\mathnet{http://mi.mathnet.ru//eng/sm9068}
\crossref{https://doi.org/10.1070/SM9068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942835}
\zmath{https://zbmath.org/?q=an:1415.65018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..565D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471828000005}
\elib{https://elibrary.ru/item.asp?id=37180603}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071077468}
Linking options:
  • https://www.mathnet.ru/eng/sm9068
  • https://doi.org/10.1070/SM9068
  • https://www.mathnet.ru/eng/sm/v210/i4/p103
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024