Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 82, Issue 1, Pages 231–241
DOI: https://doi.org/10.1070/SM1995v082n01ABEH003561
(Mi sm906)
 

This article is cited in 28 scientific papers (total in 29 papers)

Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem

L. D. Pustyl'nikov
References:
Abstract: The Ulam model is studied in this paper: a small elastic ball moves vertically between two infinitely heavy horizontal walls, each of which moves in the vertical direction according to a periodic law. It is proved that the velocity of the ball is always bounded. The proof is based on a generalization of Moser's theorem on the existence of invariant curves under an area preserving mapping of an annulus.
Received: 16.01.1993
Bibliographic databases:
UDC: 517.928.7+517.938.5
MSC: Primary 58F10, 58F13, 58F05; Secondary 82C05
Language: English
Original paper language: Russian
Citation: L. D. Pustyl'nikov, “Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 231–241
Citation in format AMSBIB
\Bibitem{Pus94}
\by L.~D.~Pustyl'nikov
\paper Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 82
\issue 1
\pages 231--241
\mathnet{http://mi.mathnet.ru/eng/sm906}
\crossref{https://doi.org/10.1070/SM1995v082n01ABEH003561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1280400}
\zmath{https://zbmath.org/?q=an:0854.58028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RR54800012}
Linking options:
  • https://www.mathnet.ru/eng/sm906
  • https://doi.org/10.1070/SM1995v082n01ABEH003561
  • https://www.mathnet.ru/eng/sm/v185/i6/p113
  • This publication is cited in the following 29 articles:
    1. Yaqi Liang, Xiong Li, “Dynamics of the Fermi–Ulam model in an external gravitational field”, Nonlinearity, 37:2 (2024), 025017  crossref
    2. Danilo S. Rando, Arturo C. Martí, Edson D. Leonel, “Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:2 (2023)  crossref
    3. Joelson D.V. Hermes, Marcelo A. dos Reis, Iberê L. Caldas, Edson D. Leonel, “Break-up of invariant curves in the Fermi-Ulam model”, Chaos, Solitons & Fractals, 162 (2022), 112410  crossref
    4. D.F..M. Oliveira, Mario Roberto Silva, E.D.. Leonel, “A symmetry break in energy distribution and a biased random walk behavior causing unlimited diffusion in a two dimensional mapping”, Physica A: Statistical Mechanics and its Applications, 2015  crossref
    5. T. Pereira, D. Turaev, D.C. Wunsch, G. Fridman, J. Levesley, I. Tyukin, “Fast Fermi Acceleration and Entropy Growth”, Math. Model. Nat. Phenom, 10:3 (2015), 31  crossref  mathscinet  zmath
    6. V Gelfreich, V Rom-Kedar, D Turaev, “Oscillating mushrooms: adiabatic theory for a non-ergodic system”, J. Phys. A: Math. Theor, 47:39 (2014), 395101  crossref  mathscinet  zmath
    7. L. D. Pustylnikov, M. V. Deryabin, “Chërnye dyry i obobschënnye relyativistskie billiardy”, Preprinty IPM im. M. V. Keldysha, 2013, 054, 36 pp.  mathnet
    8. De Simoi J., “Fermi Acceleration in Anti-Integrable Limits of the Standard Map”, Commun. Math. Phys., 321:3 (2013), 703–745  crossref  mathscinet  zmath  isi
    9. Diego F. M. Oliveira, Edson D. Leonel, “In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas”, Chaos, 22:2 (2012), 026123  crossref  mathscinet  zmath
    10. V. Gelfreich, V. Rom-Kedar, D. Turaev, “Fermi acceleration and adiabatic invariants for non-autonomous billiards”, Chaos, 22:3 (2012), 033116  crossref  mathscinet  zmath
    11. Oliveira D.F.M., Robnik M., “Scaling Invariance in a Time-Dependent Elliptical Billiard”, Int. J. Bifurcation Chaos, 22:9 (2012), 1250207  crossref  mathscinet  zmath  isi
    12. de Simoi J., Dolgopyat D., “Dynamics of Some Piecewise Smooth Fermi-Ulam Models”, Chaos, 22:2 (2012), 026124  crossref  mathscinet  zmath  adsnasa  isi
    13. A. Yu. Loskutov, A. B. Ryabov, A. K. Krasnova, O. A. Chichigina, “Bilyardy s vozmuschaemymi granitsami i nekotorye ikh svoistva”, Nelineinaya dinam., 6:3 (2010), 573–604  mathnet  elib
    14. Alexander Loskutov, Alexei Ryabov, E.D.. Leonel, “Separation of particles in time-dependent focusing billiards”, Physica A: Statistical Mechanics and its Applications, 389:23 (2010), 5408  crossref  mathscinet
    15. F. Lenz, F. K. Diakonos, P. Schmelcher, “Tunable Fermi Acceleration in the Driven Elliptical Billiard”, Phys Rev Letters, 100:1 (2008), 014103  crossref  mathscinet  adsnasa  isi
    16. Denis Gouvêa Ladeira, Jafferson Kamphorst Leal da Silva, “Scaling of dynamical properties of the Fermi–Ulam accelerator”, Physica A: Statistical Mechanics and its Applications, 387:23 (2008), 5707  crossref
    17. A. Yu. Loskutov, “Dynamical chaos: systems of classical mechanics”, Phys. Usp., 50:9 (2007), 939–964  mathnet  crossref  crossref  adsnasa  isi  elib
    18. Edson D. Leonel, Diego F.M. Oliveira, R. Egydio de Carvalho, “Scaling properties of the regular dynamics for a dissipative bouncing ball model”, Physica A: Statistical Mechanics and its Applications, 386:1 (2007), 73  crossref
    19. Denis Gouvêa Ladeira, Jafferson Kamphorst Leal da Silva, “Time-dependent properties of a simplified Fermi-Ulam accelerator model”, Phys Rev E, 73:2 (2006), 026201  crossref  adsnasa  isi
    20. Edson D Leonel, P V E McClintock, “A hybrid Fermi–Ulam-bouncer model”, J Phys A Math Gen, 38:4 (2005), 823–839  crossref  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:560
    Russian version PDF:114
    English version PDF:17
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025