Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 6, Pages 809–835
DOI: https://doi.org/10.1070/SM9057
(Mi sm9057)
 

This article is cited in 7 scientific papers (total in 7 papers)

Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem

D. V. Gorbachev, V. I. Ivanov

Tula State University, Tula, Russia
References:
Abstract: The Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem on the Cartesian product of half-lines are solved under natural conditions on a weight function defined as a product of one-dimensional weight functions. Extremal functions are constructed. A multivariate Markov quadrature formula is proved based on the zeros of eigenfunctions of the Sturm-Liouville problem. This quadrature formula is shown to be sharp on entire multivariate functions of exponential type. A Paley-Wiener type theorem is proved for the multivariate Fourier transform. A weighted L2-analogue of the Kotel'nikov-Nyquist-Whittaker-Shannon sampling theorem is put forward.
Bibliography: 42 titles.
Keywords: Sturm-Liouville problem, Fourier transform, Turán, Fejér and Bohman extremal problems, Gauss and Markov quadrature formulae.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00308-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00308-a).
Received: 30.12.2017 and 18.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
MSC: Primary 42B10; Secondary 41A55, 34B24
Language: English
Original paper language: Russian
Citation: D. V. Gorbachev, V. I. Ivanov, “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem”, Sb. Math., 210:6 (2019), 809–835
Citation in format AMSBIB
\Bibitem{GorIva19}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Tur\'an, Fej\'er and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a~Sturm-Liouville problem
\jour Sb. Math.
\yr 2019
\vol 210
\issue 6
\pages 809--835
\mathnet{http://mi.mathnet.ru/eng/sm9057}
\crossref{https://doi.org/10.1070/SM9057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954338}
\zmath{https://zbmath.org/?q=an:1426.42008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..809G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000482090700003}
\elib{https://elibrary.ru/item.asp?id=37652218}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072987338}
Linking options:
  • https://www.mathnet.ru/eng/sm9057
  • https://doi.org/10.1070/SM9057
  • https://www.mathnet.ru/eng/sm/v210/i6/p56
  • This publication is cited in the following 7 articles:
    1. Andrés Chirre, Dimitar Dimitrov, Emily Quesada-Herrera, Mateus Sousa, “An extremal problem and inequalities for entire functions of exponential type”, Proc. Amer. Math. Soc., 152:8 (2024), 3299  crossref
    2. D. V. Gorbachev, V. I. Ivanov, “Logan–Hermite Extremal Problems for Entire Functions of Exponential Type”, Math. Notes, 113:1 (2023), 143–148  mathnet  crossref  crossref  mathscinet
    3. D. Gorbachev, V. Ivanov, S. Tikhonov, “Logan's problem for Jacobi transforms”, Can. J. Math., 2023, 1–31  crossref  mathscinet
    4. R. Sousa, M. Guerra, S. Yakubovich, “A unified construction of product formulas and convolutions for Sturm-Liouville operators”, Anal. Math. Phys., 11:2 (2021), 87  crossref  mathscinet  isi
    5. D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110  mathnet  crossref
    6. D. Gorbachev, V. Ivanov, S. Tikhonov, “Uncertainty principles for eventually constant sign bandlimited functions”, SIAM J. Math. Anal., 52:5 (2020), 4751–4782  crossref  mathscinet  zmath  isi
    7. D. V. Gorbachev, N. N. Dobrovolskii, “Ob ekstremalnykh zadachakh tipa Nikolskogo–Bernshteina i Turana dlya preobrazovaniya Danklya”, Chebyshevskii sb., 20:3 (2019), 394–400  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:715
    Russian version PDF:82
    English version PDF:54
    References:80
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025