Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 12, Pages 1756–1782
DOI: https://doi.org/10.1070/SM9049
(Mi sm9049)
 

This article is cited in 3 scientific papers (total in 3 papers)

Regular subcategories in bounded derived categories of affine schemes

A. Elaginab, V. A. Luntscb

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University Higher School of Economics, Moscow
c Indiana University, Bloomington, IN, USA
References:
Abstract: Let $R$ be a commutative Noetherian ring such that $X=\operatorname{Spec} R$ is connected. We prove that the category $D^b (\operatorname{coh} X)$ contains no proper full triangulated subcategories which are strongly generated. We also bound below the Rouquier dimension of a triangulated category $\mathscr{T}$, if there exists a triangulated functor $\mathscr{T} \to D^b(\operatorname{coh} X)$ with certain properties. Applications are given to the cohomological annihilator of $R$ and to point-like objects in $\mathscr{T}$.
Bibliography: 15 titles.
Keywords: derived category, affine scheme, strong generator.
Funding agency Grant number
Russian Science Foundation 14-50-00150
Ministry of Education and Science of the Russian Federation 14.641.31.0001
The research of A. D. Elagin was supported by the Russian Science Foundation under grant no. 14-50-00150 at the Institute for Information Transmission Problems of the Russian Academy of Sciences. The research of V. A. Lunts was supported by the Laboratory of Mirror Symmetry NRU HSE, RF Government grant, agreement no. 14.641.31.0001. Sections 2 and 3 of this paper were written by A. D. Elagin and sections 4 and 5 were written by V. A. Lunts.
Received: 13.12.2017 and 17.09.2018
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 12, Pages 87–116
DOI: https://doi.org/10.4213/sm9049
Bibliographic databases:
Document Type: Article
UDC: 512.73
MSC: 14F05, 18E30
Language: English
Original paper language: Russian
Citation: A. Elagin, V. A. Lunts, “Regular subcategories in bounded derived categories of affine schemes”, Mat. Sb., 209:12 (2018), 87–116; Sb. Math., 209:12 (2018), 1756–1782
Citation in format AMSBIB
\Bibitem{ElaLun18}
\by A.~Elagin, V.~A.~Lunts
\paper Regular subcategories in bounded derived categories of affine schemes
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 12
\pages 87--116
\mathnet{http://mi.mathnet.ru/sm9049}
\crossref{https://doi.org/10.4213/sm9049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881801}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1756E}
\elib{https://elibrary.ru/item.asp?id=36448145}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 12
\pages 1756--1782
\crossref{https://doi.org/10.1070/SM9049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458805100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062832063}
Linking options:
  • https://www.mathnet.ru/eng/sm9049
  • https://doi.org/10.1070/SM9049
  • https://www.mathnet.ru/eng/sm/v209/i12/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:372
    Russian version PDF:58
    English version PDF:23
    References:43
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024