Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 12, Pages 1690–1727
DOI: https://doi.org/10.1070/SM9039
(Mi sm9039)
 

This article is cited in 38 scientific papers (total in 38 papers)

Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems

V. V. Vedyushkina, I. S. Kharcheva

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: We introduce a new class of billiards—billiard books, which are integrable Hamiltonian systems. It turns out that for any nondegenerate three-dimensional bifurcation (3-atom), a billiard book can be algorithmically constructed in which such a bifurcation appears. Consequently, any integrable Hamiltonian nondegenerate dynamical system with two degrees of freedom can be modelled in some neighbourhood of a critical leaf of the Liouville foliation in the iso-energy 3-manifold by a billiard.
Bibliography: 25 titles.
Keywords: integrable system, billiard, Liouville equivalence, Fomenko-Zieschang invariant.
Funding agency Grant number
Russian Science Foundation 17-11-01303
This research was supported by the Russian Science Foundation (project no. 17-11-01303).
Received: 20.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37G10, 37J20, 70E40
Language: English
Original paper language: Russian
Citation: V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727
Citation in format AMSBIB
\Bibitem{VedKha18}
\by V.~V.~Vedyushkina, I.~S.~Kharcheva
\paper Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems
\jour Sb. Math.
\yr 2018
\vol 209
\issue 12
\pages 1690--1727
\mathnet{http://mi.mathnet.ru//eng/sm9039}
\crossref{https://doi.org/10.1070/SM9039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881798}
\zmath{https://zbmath.org/?q=an:1408.37098}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1690V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458805100002}
\elib{https://elibrary.ru/item.asp?id=36448120}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062863130}
Linking options:
  • https://www.mathnet.ru/eng/sm9039
  • https://doi.org/10.1070/SM9039
  • https://www.mathnet.ru/eng/sm/v209/i12/p17
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024