Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 3, Pages 364–416
DOI: https://doi.org/10.1070/SM9018
(Mi sm9018)
 

This article is cited in 8 scientific papers (total in 8 papers)

Is Zaremba's conjecture true?

I. D. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia
References:
Abstract: For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$.
Bibliography: 25 titles.
Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05700-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 18-01-00886-а).
Received: 16.10.2017 and 29.04.2018
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.216
MSC: 11А55, 11J70, 11Y65
Language: English
Original paper language: Russian
Citation: I. D. Kan, “Is Zaremba's conjecture true?”, Sb. Math., 210:3 (2019), 364–416
Citation in format AMSBIB
\Bibitem{Kan19}
\by I.~D.~Kan
\paper Is Zaremba's conjecture true?
\jour Sb. Math.
\yr 2019
\vol 210
\issue 3
\pages 364--416
\mathnet{http://mi.mathnet.ru//eng/sm9018}
\crossref{https://doi.org/10.1070/SM9018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920447}
\zmath{https://zbmath.org/?q=an:1437.11010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..364K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468092700003}
\elib{https://elibrary.ru/item.asp?id=37089814}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067929864}
Linking options:
  • https://www.mathnet.ru/eng/sm9018
  • https://doi.org/10.1070/SM9018
  • https://www.mathnet.ru/eng/sm/v210/i3/p75
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025