Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 3, Pages 364–416
DOI: https://doi.org/10.1070/SM9018
(Mi sm9018)
 

This article is cited in 8 scientific papers (total in 8 papers)

Is Zaremba's conjecture true?

I. D. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia
References:
Abstract: For finite continued fractions in which all partial quotients lie in the alphabet {1,2,3,5}, it is shown that the set of denominators not exceeding N has cardinality N0.85. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives N0.80.
Bibliography: 25 titles.
Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05700-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 18-01-00886-а).
Received: 16.10.2017 and 29.04.2018
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.216
MSC: 11А55, 11J70, 11Y65
Language: English
Original paper language: Russian
Citation: I. D. Kan, “Is Zaremba's conjecture true?”, Sb. Math., 210:3 (2019), 364–416
Citation in format AMSBIB
\Bibitem{Kan19}
\by I.~D.~Kan
\paper Is Zaremba's conjecture true?
\jour Sb. Math.
\yr 2019
\vol 210
\issue 3
\pages 364--416
\mathnet{http://mi.mathnet.ru/eng/sm9018}
\crossref{https://doi.org/10.1070/SM9018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920447}
\zmath{https://zbmath.org/?q=an:1437.11010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..364K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468092700003}
\elib{https://elibrary.ru/item.asp?id=37089814}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067929864}
Linking options:
  • https://www.mathnet.ru/eng/sm9018
  • https://doi.org/10.1070/SM9018
  • https://www.mathnet.ru/eng/sm/v210/i3/p75
  • This publication is cited in the following 8 articles:
    1. I. D. Kan, G. Kh. Solov'ev, “System of Inequalities in Continued Fractions from Finite Alphabets”, Math. Notes, 113:2 (2023), 212–219  mathnet  crossref  crossref
    2. I. D. Kan, “Modular Generalization of the Bourgain–Kontorovich Theorem”, Math. Notes, 114:5 (2023), 785–796  mathnet  crossref  crossref  mathscinet
    3. I. D. Kan, “Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension”, Funct. Anal. Appl., 56:1 (2022), 48–60  mathnet  crossref  crossref
    4. I. D. Kan, V. A. Odnorob, “Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets”, Math. Notes, 112:3 (2022), 424–435  mathnet  crossref  crossref  mathscinet
    5. M. Pollicott, P. Vytnova, “Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian groups”, Trans. Amer. Math. Soc. Ser. B, 9:35 (2022), 1102  crossref  mathscinet
    6. I. D. Kan, “A strengthening of the Bourgain-Kontorovich method: three new theorems”, Sb. Math., 212:7 (2021), 921–964  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    7. I. D. Kan, V. A. Odnorob, “Inversions of Hölder's Inequality”, Math. Notes, 110:5 (2021), 700–708  mathnet  crossref  crossref  isi  elib
    8. I. D. Kan, “Usilenie odnoi teoremy Burgeina – Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:686
    Russian version PDF:127
    English version PDF:43
    References:61
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025