Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 11, Pages 1547–1574
DOI: https://doi.org/10.1070/SM9017
(Mi sm9017)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extremal trajectories in the sub-Lorentzian problem on the Engel group

A. A. Ardentova, Yu. L. Sachkova, T. Huangb, X. Yangc

a Ailamazyan Program Systems Institute of Russian Academy of Sciences
b Zhejiang Sci-Tech University, Hangzhou, The People's Republic of China
c Nanjing University of Science and Technology, The People's Republic of China
References:
Abstract: Let $\mathbb{E}$ be the Engel group and let $D$ be a rank-two left-invariant distribution with Lorentzian metric on $\mathbb{E}$. The sub-Lorentzian problem is stated as the problem of maximizing the sub-Lorentzian distance. A parametrization of timelike and spacelike normal extremal trajectories is obtained in terms of Jacobi elliptic functions. Discrete symmetry groups are described in the cases of timelike and spacelike trajectories; in both cases the fixed points and the corresponding Maxwell points are calculated for each symmetry. These calculations underlie estimates for the cut time (when the trajectory ceases to be globally optimal).
Bibliography: 17 titles.
Keywords: Engel group, extremal trajectories, sub-Lorentzian metric, Jacobi functions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation АААА-А17-117040610374-8
Russian Science Foundation 17-11-01387
The research by A. A. Ardentov and Yu. L. Sachkov in § 4 was carried out as part of the implementation of a state assignment of the Ministry of Education and Science of the Russian Federation (project no. AAAA-A17-117040610374-8) and in §§ 5 and 6 it was carried out with the support of the Russian Science Foundation under grant no. 17-11-01387. Sections 2 and 3 are due to T. Huang and X. Yang, and §§ 4, 5 and 6 are due to A. A. Ardentov and Yu. L. Sachkov.
Received: 16.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: Primary 53C17, 53C50; Secondary 22E25
Language: English
Original paper language: Russian
Citation: A. A. Ardentov, Yu. L. Sachkov, T. Huang, X. Yang, “Extremal trajectories in the sub-Lorentzian problem on the Engel group”, Sb. Math., 209:11 (2018), 1547–1574
Citation in format AMSBIB
\Bibitem{ArdSacHua18}
\by A.~A.~Ardentov, Yu.~L.~Sachkov, T.~Huang, X.~Yang
\paper Extremal trajectories in the sub-Lorentzian problem on the Engel group
\jour Sb. Math.
\yr 2018
\vol 209
\issue 11
\pages 1547--1574
\mathnet{http://mi.mathnet.ru//eng/sm9017}
\crossref{https://doi.org/10.1070/SM9017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871550}
\zmath{https://zbmath.org/?q=an:1409.53032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1547A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456414300001}
\elib{https://elibrary.ru/item.asp?id=36361371}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062827146}
Linking options:
  • https://www.mathnet.ru/eng/sm9017
  • https://doi.org/10.1070/SM9017
  • https://www.mathnet.ru/eng/sm/v209/i11/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025