Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 12, Pages 1803–1811
DOI: https://doi.org/10.1070/SM8999
(Mi sm8999)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalised Kummer construction and the cohomology rings of $G_2$-manifolds

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Intersection theory is used to calculate the cohomology rings of $G_2$-manifolds arising from the generalised Kummer construction. For one example, generators of the rational cohomology ring are found and their multiplication table is described.
Bibliography: 19 titles.
Keywords: cohomology ring, intersection ring, manifolds with $G_2$-holonomy.
Funding agency Grant number
Russian Science Foundation 14-11-00441
This research was supported by the Russian Science Foundation under grant no. 14-11-00441.
Received: 25.07.2017 and 23.03.2018
Bibliographic databases:
Document Type: Article
UDC: 515.142.22+514.764.214
MSC: 55N45, 57R19, 53C29
Language: English
Original paper language: Russian
Citation: I. A. Taimanov, “Generalised Kummer construction and the cohomology rings of $G_2$-manifolds”, Sb. Math., 209:12 (2018), 1803–1811
Citation in format AMSBIB
\Bibitem{Tai18}
\by I.~A.~Taimanov
\paper Generalised Kummer construction and the cohomology rings of $G_2$-manifolds
\jour Sb. Math.
\yr 2018
\vol 209
\issue 12
\pages 1803--1811
\mathnet{http://mi.mathnet.ru//eng/sm8999}
\crossref{https://doi.org/10.1070/SM8999}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881803}
\zmath{https://zbmath.org/?q=an:1409.57028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1803T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458805100007}
\elib{https://elibrary.ru/item.asp?id=36448150}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062854804}
Linking options:
  • https://www.mathnet.ru/eng/sm8999
  • https://doi.org/10.1070/SM8999
  • https://www.mathnet.ru/eng/sm/v209/i12/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024