Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 10, Pages 1533–1546
DOI: https://doi.org/10.1070/SM8979
(Mi sm8979)
 

An elementary proof of Poncelet's theorem on bicentric polygons

A. M. Shelekhov

Moscow State Pedagogical University
References:
Abstract: We give a new proof of Poncelet's theorem on bicentric polygons, using a generalisation of the notion of an orthocentre for an $n$-gon. We indicate some properties of bicentric polygons and find generalisations of Euler's formula connecting the radii of the inscribed and circumscribed circles and the distance between their centres for convex $n$-gons with $n=4, 5, 6$, and also for a non-convex pentagon. In conclusion, we consider a construction of three related bicentric pentagons.
Bibliography: 6 titles.
Keywords: Poncelet's theorem on bicentric polygons, orthocentre, Euler line.
Received: 14.06.2017 and 19.07.2017
Bibliographic databases:
Document Type: Article
UDC: 514.112.4+514.112.6
MSC: Primary 51M04; Secondary 51N20
Language: English
Original paper language: Russian
Citation: A. M. Shelekhov, “An elementary proof of Poncelet's theorem on bicentric polygons”, Sb. Math., 209:10 (2018), 1533–1546
Citation in format AMSBIB
\Bibitem{She18}
\by A.~M.~Shelekhov
\paper An elementary proof of Poncelet's theorem on bicentric polygons
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1533--1546
\mathnet{http://mi.mathnet.ru//eng/sm8979}
\crossref{https://doi.org/10.1070/SM8979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859412}
\zmath{https://zbmath.org/?q=an:1410.51021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300006}
\elib{https://elibrary.ru/item.asp?id=35601311}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059145921}
Linking options:
  • https://www.mathnet.ru/eng/sm8979
  • https://doi.org/10.1070/SM8979
  • https://www.mathnet.ru/eng/sm/v209/i10/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024