Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 10, Pages 1482–1497
DOI: https://doi.org/10.1070/SM8966
(Mi sm8966)
 

This article is cited in 4 scientific papers (total in 4 papers)

On discrete values of bilinear forms

A. Iosevicha, O. Roche-Newtonb, M. Rudnevc

a Department of Mathematics, University of Rochester, Rochester, NY, USA
b Johannes Kepler University, Linz, Austria
c Department of Mathematics, University of Bristol, Bristol, UK
References:
Abstract: Let $\omega$ be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set $P\subset \mathbb R^2\setminus\{0\}$, the set $T_\omega(P)$ of nonzero values of $\omega$ on $P\times P$, if nonempty, has cardinality $\Omega(N^{96/137})$.
In the special case when $P=A\times A$, where $A$ is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form $\omega$:
$$ |AA+ AA|= \Omega(|A|^{19/12}) \quad\text{and}\quad |AA-AA|= \Omega\biggl( \frac{|A|^{49/32}}{\log^{3/32}|A|}\biggr). $$
These estimates improve their basic prototypes $\Omega(N^{2/3})$ and $\Omega(|A|^{3/2})$, which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.
Keywords: Erdős problems, sum-product estimates, cross-ratio.
Received: 10.05.2017 and 05.08.2017
Bibliographic databases:
Document Type: Article
UDC: 519.1+514.17
MSC: Primary 52C10; Secondary 11B75
Language: English
Original paper language: Russian
Citation: A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497
Citation in format AMSBIB
\Bibitem{IosRocRud18}
\by A.~Iosevich, O.~Roche-Newton, M.~Rudnev
\paper On discrete values of bilinear forms
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1482--1497
\mathnet{http://mi.mathnet.ru//eng/sm8966}
\crossref{https://doi.org/10.1070/SM8966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859410}
\zmath{https://zbmath.org/?q=an:1406.52034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300004}
\elib{https://elibrary.ru/item.asp?id=35601304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059157642}
Linking options:
  • https://www.mathnet.ru/eng/sm8966
  • https://doi.org/10.1070/SM8966
  • https://www.mathnet.ru/eng/sm/v209/i10/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:356
    Russian version PDF:30
    English version PDF:8
    References:45
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024