|
This article is cited in 4 scientific papers (total in 4 papers)
On discrete values of bilinear forms
A. Iosevicha, O. Roche-Newtonb, M. Rudnevc a Department of Mathematics, University of Rochester, Rochester, NY, USA
b Johannes Kepler University, Linz, Austria
c Department of Mathematics, University of Bristol, Bristol, UK
Abstract:
Let $\omega$ be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set $P\subset \mathbb R^2\setminus\{0\}$, the set $T_\omega(P)$ of nonzero values of $\omega$ on $P\times P$, if nonempty, has cardinality $\Omega(N^{96/137})$.
In the special case when $P=A\times A$, where $A$ is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form $\omega$:
$$
|AA+ AA|= \Omega(|A|^{19/12})
\quad\text{and}\quad
|AA-AA|= \Omega\biggl( \frac{|A|^{49/32}}{\log^{3/32}|A|}\biggr).
$$
These estimates improve their basic prototypes $\Omega(N^{2/3})$ and $\Omega(|A|^{3/2})$, which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.
Keywords:
Erdős problems, sum-product estimates, cross-ratio.
Received: 10.05.2017 and 05.08.2017
Citation:
A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497
Linking options:
https://www.mathnet.ru/eng/sm8966https://doi.org/10.1070/SM8966 https://www.mathnet.ru/eng/sm/v209/i10/p71
|
Statistics & downloads: |
Abstract page: | 356 | Russian version PDF: | 30 | English version PDF: | 8 | References: | 45 | First page: | 12 |
|