Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 5, Pages 652–659
DOI: https://doi.org/10.1070/SM8939
(Mi sm8939)
 

This article is cited in 12 scientific papers (total in 12 papers)

New estimate for a Kloosterman sum with primes for a composite modulus

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: For an arbitrary composite modulus $q$ a bound is obtained for a short Kloosterman sum with primes whose length exceeds $q^{7/10+\varepsilon}$. This bound improves the previous result by Fouvry and Shparlinski, which holds for sums of length at least $q^{3/4+\varepsilon}$.
Bibliography: 23 titles.
Keywords: Kloosterman sums, reciprocals for a given modulus, prime numbers, composite moduli.
Funding agency Grant number
Russian Science Foundation 14-11-00433
This work was supported by the Russian Science Foundation under grant no. 14-11-00433.
Received: 10.03.2017 and 14.08.2017
Bibliographic databases:
Document Type: Article
UDC: 511.33
MSC: 11L05
Language: English
Original paper language: Russian
Citation: M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659
Citation in format AMSBIB
\Bibitem{Kor18}
\by M.~A.~Korolev
\paper New estimate for a~Kloosterman sum with primes for a~composite modulus
\jour Sb. Math.
\yr 2018
\vol 209
\issue 5
\pages 652--659
\mathnet{http://mi.mathnet.ru//eng/sm8939}
\crossref{https://doi.org/10.1070/SM8939}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795150}
\zmath{https://zbmath.org/?q=an:1440.11150}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..652K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439467500002}
\elib{https://elibrary.ru/item.asp?id=32823060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052023212}
Linking options:
  • https://www.mathnet.ru/eng/sm8939
  • https://doi.org/10.1070/SM8939
  • https://www.mathnet.ru/eng/sm/v209/i5/p54
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:632
    Russian version PDF:52
    English version PDF:18
    References:49
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024