Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 5, Pages 714–738
DOI: https://doi.org/10.1070/SM8921
(Mi sm8921)
 

This article is cited in 9 scientific papers (total in 9 papers)

Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents

F. Kh. Mukminovab

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b Ufa State Aviation Technical University
References:
Abstract: The first boundary value problem is considered for a certain class of anisotropic parabolic equations with variable nonlinearity exponents in a cylindrical domain $( 0,T)\times\Omega$, where $\Omega$ is a bounded domain. The parabolic term in the equation has the form $(\beta(x,u))_t$ and is determined by the function $\beta(x,r)\in L_1(\Omega)$, where $r\in \mathbb R$, which only satisfies the Carathéodory condition and is increasing in $r$. The existence of a weak and a renormalized solution is proved.
Bibliography: 26 titles.
Keywords: anisotropic parabolic equation, renormalized solution, variable nonlinearity exponents, existence of a solution.
Received: 02.02.2017 and 25.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.954+517.956.45+517.958:531.72
MSC: 35K59
Language: English
Original paper language: Russian
Citation: F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738
Citation in format AMSBIB
\Bibitem{Muk18}
\by F.~Kh.~Mukminov
\paper Existence of a~renormalized solution to an anisotropic parabolic problem with
variable nonlinearity exponents
\jour Sb. Math.
\yr 2018
\vol 209
\issue 5
\pages 714--738
\mathnet{http://mi.mathnet.ru//eng/sm8921}
\crossref{https://doi.org/10.1070/SM8921}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795153}
\zmath{https://zbmath.org/?q=an:1393.35112}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..714M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439467500005}
\elib{https://elibrary.ru/item.asp?id=32823063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052024799}
Linking options:
  • https://www.mathnet.ru/eng/sm8921
  • https://doi.org/10.1070/SM8921
  • https://www.mathnet.ru/eng/sm/v209/i5/p120
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:557
    Russian version PDF:68
    English version PDF:48
    References:72
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024