Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 5, Pages 714–738
DOI: https://doi.org/10.1070/SM8921
(Mi sm8921)
 

This article is cited in 9 scientific papers (total in 9 papers)

Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents

F. Kh. Mukminovab

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b Ufa State Aviation Technical University
References:
Abstract: The first boundary value problem is considered for a certain class of anisotropic parabolic equations with variable nonlinearity exponents in a cylindrical domain (0,T)×Ω(0,T)×Ω, where ΩΩ is a bounded domain. The parabolic term in the equation has the form (β(x,u))t(β(x,u))t and is determined by the function β(x,r)L1(Ω)β(x,r)L1(Ω), where rR, which only satisfies the Carathéodory condition and is increasing in r. The existence of a weak and a renormalized solution is proved.
Bibliography: 26 titles.
Keywords: anisotropic parabolic equation, renormalized solution, variable nonlinearity exponents, existence of a solution.
Received: 02.02.2017 and 25.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.954+517.956.45+517.958:531.72
MSC: 35K59
Language: English
Original paper language: Russian
Citation: F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738
Citation in format AMSBIB
\Bibitem{Muk18}
\by F.~Kh.~Mukminov
\paper Existence of a~renormalized solution to an anisotropic parabolic problem with
variable nonlinearity exponents
\jour Sb. Math.
\yr 2018
\vol 209
\issue 5
\pages 714--738
\mathnet{http://mi.mathnet.ru/eng/sm8921}
\crossref{https://doi.org/10.1070/SM8921}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795153}
\zmath{https://zbmath.org/?q=an:1393.35112}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..714M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439467500005}
\elib{https://elibrary.ru/item.asp?id=32823063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052024799}
Linking options:
  • https://www.mathnet.ru/eng/sm8921
  • https://doi.org/10.1070/SM8921
  • https://www.mathnet.ru/eng/sm/v209/i5/p120
  • This publication is cited in the following 9 articles:
    1. Z. Chen, B. Shen, “The existence of entropy solutions for a class of parabolic equations”, Mathematics, 11:17 (2023), 3753  crossref
    2. Rakesh Arora, Sergey Shmarev, “Existence and global second-order regularity for anisotropic parabolic equations with variable growth”, Journal of Differential Equations, 349 (2023), 83  crossref
    3. Chrif M., Manouni S.E., Hjiaj H., “On the Study of Strongly Parabolic Problems Involving Anisotropic Operators in l-1”, Mon.heft. Math., 195:4 (2021), 611–647  crossref  mathscinet  isi  scopus
    4. Kozhevnikova L.M., “On Solutions of Anisotropic Elliptic Equations With Variable Exponent and Measure Data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367  crossref  mathscinet  isi
    5. V. F. Vil'danova, “Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold”, Sb. Math., 211:2 (2020), 226–257  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. F. Kh. Mukminov, “Existence and Uniqueness of Renormalized Solutions to Parabolic Problems for Equations with Diffuse Measure”, J Math Sci, 247:6 (2020), 900  crossref  mathscinet
    8. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. F. Kh. Mukminov, “Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:617
    Russian version PDF:76
    English version PDF:61
    References:81
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025