Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 4, Pages 503–518
DOI: https://doi.org/10.1070/SM8914
(Mi sm8914)
 

Immersions of the circle into a surface

S. A. Melikhov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We classify immersions $f$ of a circle in a two-dimensional manifold $M$ in terms of elementary invariants: the parity $S(f)$ of the number of double points of a self-transverse $C^1$-approximation of $f$, and the winding number $T(e\overline f)$ of the immersion $e\overline f\colon S^1\to M_f\subset\mathbb R^2$, where $\overline f$ is the lift of $f$ to the cover $M_f$ of $M$ corresponding to the subgroup $\langle[f]\rangle\subset\pi_1(M)$.
Namely, immersions $f,g\colon S^1\to M$ are regularly homotopic if and only if they are homotopic and the following additional condition is satisfied: if $M=S^2$, or $M=\mathbb R P^2$, or the normal bundle $\nu(f)$ is nonorientable, then $S(f)=S(g)$; if $M\ne S^2$, $M\ne \mathbb R P^2$ and the bundles $\nu(f)$ and $\nu(g)$ have orientations $o$ and $o'$ compatible with respect to the homotopy, then $T (e_o\overline f)=T(e_{o'}\overline g)$, where $e_o$ is the standard embedding of the oriented surface $M_f$ (an annulus or a plane) in $\mathbb R^2$.
In fact, for homotopic immersions $f$ and $g$ both numbers $S(f)-S(g)$ and $T(e_o\overline f)-T(e_{o'}\overline g)$ are reduced to the winding number of the lift of a certain null-homotopic immersion $f\#g^*$ to the universal covering of $M$.
The immersions $S^1\to M$ considered above can be smooth or topological; a smoothing theorem is proved showing that this difference is irrelevant. We also give a classification of immersions of a graph in $M$ up to regular homotopy, in terms of the invariants $S(f)$ and $T(e_o\overline f)$ of the immersed circles. The proofs use the h-principle and are not very complicated.
Bibliography: 13 entries.
Keywords: immersion, winding number, parity of the number of double points.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 03.01.2017 and 04.09.2017
Bibliographic databases:
Document Type: Article
UDC: 515.162.6+515.163.6+515.164.6
MSC: Primary 57N35, 57R42; Secondary 57R10
Language: English
Original paper language: Russian
Citation: S. A. Melikhov, “Immersions of the circle into a surface”, Sb. Math., 209:4 (2018), 503–518
Citation in format AMSBIB
\Bibitem{Mel18}
\by S.~A.~Melikhov
\paper Immersions of the circle into a surface
\jour Sb. Math.
\yr 2018
\vol 209
\issue 4
\pages 503--518
\mathnet{http://mi.mathnet.ru//eng/sm8914}
\crossref{https://doi.org/10.1070/SM8914}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780078}
\zmath{https://zbmath.org/?q=an:1496.57026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..503M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436042300003}
\elib{https://elibrary.ru/item.asp?id=32641399}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049840907}
Linking options:
  • https://www.mathnet.ru/eng/sm8914
  • https://doi.org/10.1070/SM8914
  • https://www.mathnet.ru/eng/sm/v209/i4/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:477
    Russian version PDF:64
    English version PDF:55
    References:54
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024