Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 4, Pages 580–603
DOI: https://doi.org/10.1070/SM8907
(Mi sm8907)
 

This article is cited in 4 scientific papers (total in 4 papers)

An application of the sum-product phenomenon to sets avoiding several linear equations

I. D. Shkredov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Using the theory of sum-products we prove that for an arbitrary κ1/3 any subset of Fp avoiding t linear equations with three variables has size less than O(p/tκ).
Bibliography: 26 titles.
Keywords: additive combinatorics, sum-product, Fourier transform.
Funding agency Grant number
Russian Science Foundation 14-11-00433
This work was supported by the Russian Science Foundation under grant no. 14-11-00433.
Received: 05.01.2017 and 01.06.2017
Bibliographic databases:
Document Type: Article
UDC: 511.218
MSC: 11B13, 11D04
Language: English
Original paper language: Russian
Citation: I. D. Shkredov, “An application of the sum-product phenomenon to sets avoiding several linear equations”, Sb. Math., 209:4 (2018), 580–603
Citation in format AMSBIB
\Bibitem{Shk18}
\by I.~D.~Shkredov
\paper An application of the sum-product phenomenon to sets avoiding several linear equations
\jour Sb. Math.
\yr 2018
\vol 209
\issue 4
\pages 580--603
\mathnet{http://mi.mathnet.ru/eng/sm8907}
\crossref{https://doi.org/10.1070/SM8907}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780081}
\zmath{https://zbmath.org/?q=an:1431.11025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..580S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436042300006}
\elib{https://elibrary.ru/item.asp?id=32641404}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040548438}
Linking options:
  • https://www.mathnet.ru/eng/sm8907
  • https://doi.org/10.1070/SM8907
  • https://www.mathnet.ru/eng/sm/v209/i4/p117
  • This publication is cited in the following 4 articles:
    1. A. Mohammadi, T. Pham, Y. Wang, “An energy decomposition theorem for matrices and related questions”, Can. Math. Bull., 66:4 (2023), 1280  crossref
    2. I. D. Shkredov, Trigonometric Sums and Their Applications, 2020, 261  crossref
    3. I. D. Shkredov, “A Short Remark on the Multiplicative Energy of the Spectrum”, Math. Notes, 105:3-4 (2019), 449–457  mathnet  crossref  crossref  mathscinet  isi  elib
    4. S. V. Konyagin, I. D. Shkredov, “On subgraphs of random Cayley sum graphs”, European J. Combin., 70 (2018), 61–74  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:621
    Russian version PDF:57
    English version PDF:30
    References:65
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025