Abstract:
Using the theory of sum-products we prove that for an arbitrary κ⩽1/3 any subset of Fp avoiding t linear equations with three variables has size less than O(p/tκ).
Bibliography: 26 titles.
\Bibitem{Shk18}
\by I.~D.~Shkredov
\paper An application of the sum-product phenomenon to sets avoiding several linear equations
\jour Sb. Math.
\yr 2018
\vol 209
\issue 4
\pages 580--603
\mathnet{http://mi.mathnet.ru/eng/sm8907}
\crossref{https://doi.org/10.1070/SM8907}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780081}
\zmath{https://zbmath.org/?q=an:1431.11025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..580S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436042300006}
\elib{https://elibrary.ru/item.asp?id=32641404}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040548438}
Linking options:
https://www.mathnet.ru/eng/sm8907
https://doi.org/10.1070/SM8907
https://www.mathnet.ru/eng/sm/v209/i4/p117
This publication is cited in the following 4 articles:
A. Mohammadi, T. Pham, Y. Wang, “An energy decomposition theorem for matrices and related questions”, Can. Math. Bull., 66:4 (2023), 1280
I. D. Shkredov, Trigonometric Sums and Their Applications, 2020, 261
I. D. Shkredov, “A Short Remark on the Multiplicative Energy of the Spectrum”, Math. Notes, 105:3-4 (2019), 449–457
S. V. Konyagin, I. D. Shkredov, “On subgraphs of random Cayley sum graphs”, European J. Combin., 70 (2018), 61–74