Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 12, Pages 1835–1853
DOI: https://doi.org/10.1070/SM8903
(Mi sm8903)
 

Minimum nonuniform graph partitioning with unrelated weights

K. S. Makarycheva, Yu. S. Makarychevb

a Northwestern University, Evanston, IL, USA
b Toyota Technological Institute at Chicago, Chicago, IL, USA
References:
Abstract: We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph $G=(V,E)$ and $k$ numbers $\rho_1,\dots, \rho_k$. The goal is to partition $V$ into $k$ disjoint sets (bins) $P_1,\dots, P_k$ satisfying $|P_i|\leq \rho_i |V|$ for all $i$, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an $O(\sqrt{\log |V| \log k})$ approximation for the objective function in general graphs and an $O(1)$ approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints $|P_i| \leq (5+ \varepsilon)\rho_i |V|$. This algorithm is an improvement upon the $O(\log |V|)$-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of ‘unrelated weights’ and to the case of `unrelated $d$-dimensional weights'.
A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014).
Bibliography: 7 titles.
Keywords: minimum nonuniform graph partitioning problem, minimum nonuniform graph partitioning problem with unrelated weights, approximation for trees, approximation algorithm, semidefinite programming.
Funding agency Grant number
National Science Foundation CCF-1150062
IIS-1302662
Yu. S. Makarychev's research was carried out with the support of the National Science Foundation (grants CCF-1150062 and IIS-1302662).
Received: 31.12.2016 and 17.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.178
Language: English
Original paper language: Russian
Citation: K. S. Makarychev, Yu. S. Makarychev, “Minimum nonuniform graph partitioning with unrelated weights”, Sb. Math., 208:12 (2017), 1835–1853
Citation in format AMSBIB
\Bibitem{MakMak17}
\by K.~S.~Makarychev, Yu.~S.~Makarychev
\paper Minimum nonuniform graph partitioning with unrelated weights
\jour Sb. Math.
\yr 2017
\vol 208
\issue 12
\pages 1835--1853
\mathnet{http://mi.mathnet.ru//eng/sm8903}
\crossref{https://doi.org/10.1070/SM8903}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3733363}
\zmath{https://zbmath.org/?q=an:1390.05191}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1835M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425457000005}
\elib{https://elibrary.ru/item.asp?id=30738016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042682503}
Linking options:
  • https://www.mathnet.ru/eng/sm8903
  • https://doi.org/10.1070/SM8903
  • https://www.mathnet.ru/eng/sm/v208/i12/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024