Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 3, Pages 352–384
DOI: https://doi.org/10.1070/SM8893
(Mi sm8893)
 

This article is cited in 15 scientific papers (total in 15 papers)

Pluripotential theory and convex bodies

T. Bayraktara, T. Bloomb, N. Levenbergc

a Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Turkey
b Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
c Department of Mathematics, Indiana University, Bloomington, IN, USA
References:
Abstract: A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles $L$ over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in $\mathbb{C}^d$. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in $(\mathbb{R}^+)^d$. These classes of polynomials need not occur as sections of tensor powers of a line bundle $L$ over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results.
Bibliography: 16 titles.
Keywords: convex body, $P$-extremal function.
Funding agency Grant number
Simons Foundation 354549
N. Levenberg was supported by the Simons Foundation (grant no. 354549).
Received: 25.12.2016 and 21.03.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 3, Pages 67–101
DOI: https://doi.org/10.4213/sm8893
Bibliographic databases:
Document Type: Article
UDC: 517.55
MSC: 32U15, 32U20, 31C15
Language: English
Original paper language: Russian
Citation: T. Bayraktar, T. Bloom, N. Levenberg, “Pluripotential theory and convex bodies”, Sb. Math., 209:3 (2018), 352–384
Citation in format AMSBIB
\Bibitem{BayBloLev18}
\by T.~Bayraktar, T.~Bloom, N.~Levenberg
\paper Pluripotential theory and convex bodies
\jour Sb. Math.
\yr 2018
\vol 209
\issue 3
\pages 352--384
\mathnet{http://mi.mathnet.ru//eng/sm8893}
\crossref{https://doi.org/10.1070/SM8893}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769215}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..352B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432853500003}
\elib{https://elibrary.ru/item.asp?id=32641392}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048077925}
Linking options:
  • https://www.mathnet.ru/eng/sm8893
  • https://doi.org/10.1070/SM8893
  • https://www.mathnet.ru/eng/sm/v209/i3/p67
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:554
    Russian version PDF:73
    English version PDF:27
    References:67
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024