Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 6, Pages 871–900
DOI: https://doi.org/10.1070/SM8885
(Mi sm8885)
 

Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density

V. N. Seliverstov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The asymptotic behaviour of even canonical products with zeros on the real axis is considered. It is assumed that the set of zeros has density (the sequence $\pm \lambda_{n}$ has density). Sharp asymptotic estimates for the logarithm of the modulus of the canonical product are obtained under certain restrictions on the rate of convergence of the ratio $n/\lambda_{n}$ to its limit.
Bibliography: 8 titles.
Keywords: even canonical product, regularly varying function, asymptotic estimate.
Received: 15.12.2016 and 29.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.547.22
MSC: 30D15
Language: English
Original paper language: Russian
Citation: V. N. Seliverstov, “Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density”, Sb. Math., 209:6 (2018), 871–900
Citation in format AMSBIB
\Bibitem{Sel18}
\by V.~N.~Seliverstov
\paper Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density
\jour Sb. Math.
\yr 2018
\vol 209
\issue 6
\pages 871--900
\mathnet{http://mi.mathnet.ru//eng/sm8885}
\crossref{https://doi.org/10.1070/SM8885}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807909}
\zmath{https://zbmath.org/?q=an:1398.30018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..871S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441840600007}
\elib{https://elibrary.ru/item.asp?id=34940688}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052405173}
Linking options:
  • https://www.mathnet.ru/eng/sm8885
  • https://doi.org/10.1070/SM8885
  • https://www.mathnet.ru/eng/sm/v209/i6/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:363
    Russian version PDF:43
    English version PDF:6
    References:47
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024