Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 3, Pages 421–431
DOI: https://doi.org/10.1070/SM8881
(Mi sm8881)
 

This article is cited in 1 scientific paper (total in 1 paper)

Exact errors of best approximation for complex-valued periodic functions

M. I. Ganzburg

Department of Mathematics, Hampton University, Hampton, VA, USA
References:
Abstract: We extend Nagy's theorem on best approximation by trigonometric polynomials in the $L_1$ metric to certain complex-valued periodic functions. We use this result to find exact constants of best approximation in $L_1$ and $L_\infty$ on some complex convolution classes. For classes of real-valued convolutions these constants were found by Nikol'skii. As an example, we apply these results to the Schwarz kernel and to the corresponding convolution classes.
Bibliography: 20 titles.
Keywords: trigonometric polynomial, complex-valued function, best approximation, Nagy's theorem, convolution classes.
Received: 13.12.2016 and 14.04.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 3, Pages 138–149
DOI: https://doi.org/10.4213/sm8881
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: 41A44, 41A10
Language: English
Original paper language: Russian
Citation: M. I. Ganzburg, “Exact errors of best approximation for complex-valued periodic functions”, Mat. Sb., 209:3 (2018), 138–149; Sb. Math., 209:3 (2018), 421–431
Citation in format AMSBIB
\Bibitem{Gan18}
\by M.~I.~Ganzburg
\paper Exact errors of best approximation for complex-valued periodic functions
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 3
\pages 138--149
\mathnet{http://mi.mathnet.ru/sm8881}
\crossref{https://doi.org/10.4213/sm8881}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769217}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..421G}
\elib{https://elibrary.ru/item.asp?id=32428137}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 3
\pages 421--431
\crossref{https://doi.org/10.1070/SM8881}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432853500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044858089}
Linking options:
  • https://www.mathnet.ru/eng/sm8881
  • https://doi.org/10.1070/SM8881
  • https://www.mathnet.ru/eng/sm/v209/i3/p138
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:508
    Russian version PDF:104
    English version PDF:10
    References:65
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024