Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 3, Pages 320–351
DOI: https://doi.org/10.1070/SM8878
(Mi sm8878)
 

This article is cited in 6 scientific papers (total in 6 papers)

Ahlfors problem for polynomials

B. Eichingera, P. Yuditskiib

a Institute of Analysis, Johannes Kepler University Linz, Austria
b Section Dynamical Systems and Approximation Theory, Institute of Analysis, Johannes Kepler University Linz, Austria
References:
Abstract: We present a conjecture that the asymptotics for Chebyshev polynomials in a complex domain can be given in terms of the reproducing kernels of a suitable Hilbert space of analytic functions in this domain. It is based on two classical results due to Garabedian and Widom. To support this conjecture we study the asymptotics for Ahlfors extremal polynomials in the complement to a system of intervals on $\mathbb{R}$, arcs on $\mathbb{T}$, and the asymptotics of the extremal entire functions for the continuous counterpart of this problem.
Bibliography: 35 titles.
Keywords: Chebyshev polynomial, analytic capacity, hyperelliptic Riemann surface, Abel-Jacobi inversion, complex Green's and Martin functions, reproducing kernel.
Funding agency Grant number
Austrian Science Fund P25591-N25
This research was supported by the Austrian Science Fund FWF (project no. P25591-N25).
Received: 09.12.2016 and 14.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.535.2+517.54
MSC: Primary 30C10, 30E15, 41A50; Secondary 14K20, 30C85, 30F10, 46E22
Language: English
Original paper language: Russian
Citation: B. Eichinger, P. Yuditskii, “Ahlfors problem for polynomials”, Sb. Math., 209:3 (2018), 320–351
Citation in format AMSBIB
\Bibitem{EicYud18}
\by B.~Eichinger, P.~Yuditskii
\paper Ahlfors problem for polynomials
\jour Sb. Math.
\yr 2018
\vol 209
\issue 3
\pages 320--351
\mathnet{http://mi.mathnet.ru//eng/sm8878}
\crossref{https://doi.org/10.1070/SM8878}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769214}
\zmath{https://zbmath.org/?q=an:1402.30005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..320E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432853500002}
\elib{https://elibrary.ru/item.asp?id=32641391}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048104574}
Linking options:
  • https://www.mathnet.ru/eng/sm8878
  • https://doi.org/10.1070/SM8878
  • https://www.mathnet.ru/eng/sm/v209/i3/p34
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:570
    Russian version PDF:78
    English version PDF:17
    References:54
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024