Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 7, Pages 985–1018
DOI: https://doi.org/10.1070/SM8876
(Mi sm8876)
 

This article is cited in 4 scientific papers (total in 4 papers)

The growth of polynomials orthogonal on the unit circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$

S. A. Denisovab

a Department of Mathematics, University of Wisconsin–Madison, Madison, WI, USA
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
References:
Abstract: We consider the polynomials $\{\varphi_n(z,w)\}$ orthogonal on the circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$ and show that $\|\varphi_n(e^{i\theta},w)\|_{L^\infty(\mathbb{T})}$ can grow in $n$ at a certain rate.
Bibliography: 21 titles.
Keywords: polynomials orthogonal on the circle, Steklov's conjecture.
Funding agency Grant number
Russian Science Foundation 14-21-00025
National Science Foundation DMS1464479
The results in § \ref{s7} were obtained with the support of the Russian Science Foundation under grant no. 14-21-00025. The other results were obtained with the support of the National Science Foundation under grant no. DMS1464479.
Received: 07.12.2016 and 30.05.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 7, Pages 71–105
DOI: https://doi.org/10.4213/sm8876
Bibliographic databases:
Document Type: Article
UDC: 517.538.3
MSC: 42C05
Language: English
Original paper language: Russian
Citation: S. A. Denisov, “The growth of polynomials orthogonal on the unit circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$”, Mat. Sb., 209:7 (2018), 71–105; Sb. Math., 209:7 (2018), 985–1018
Citation in format AMSBIB
\Bibitem{Den18}
\by S.~A.~Denisov
\paper The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 7
\pages 71--105
\mathnet{http://mi.mathnet.ru/sm8876}
\crossref{https://doi.org/10.4213/sm8876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833529}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..985D}
\elib{https://elibrary.ru/item.asp?id=35276512}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 7
\pages 985--1018
\crossref{https://doi.org/10.1070/SM8876}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445503100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054792152}
Linking options:
  • https://www.mathnet.ru/eng/sm8876
  • https://doi.org/10.1070/SM8876
  • https://www.mathnet.ru/eng/sm/v209/i7/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:439
    Russian version PDF:50
    English version PDF:24
    References:45
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024