Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 11, Pages 1628–1645
DOI: https://doi.org/10.1070/SM8864
(Mi sm8864)
 

This article is cited in 14 scientific papers (total in 14 papers)

On functions of quasi-Toeplitz matrices

D. A. Binia, S. Masseib, B. Meinia

a Dipartimento di Matematica, Università di Pisa, Italy
b Scuola Normale Superiore, Pisa, Italy
References:
Abstract: Let a(z)=iZaizi be a complex-valued function, defined for |z|=1, such that +i=|iai|<. Consider the semi-infinite Toeplitz matrix T(a)=(ti,j)i,jZ+ associated with the symbol a(z) such that ti,j=aji. A quasi-Toeplitz matrix associated with the symbol a(z) is a matrix of the form A=T(a)+E where E=(ei,j), i,jZ+|ei,j|<, and is called a QT-matrix. Given a function f(x) and a QT-matrix M, we provide conditions under which f(M) is well defined and is a QT-matrix. Moreover, we introduce a parametrization of QT-matrices and algorithms for the computation of f(M). We treat the case where f(x) is given in terms of power series and the case where f(x) is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction.
Bibliography: 27 titles.
Keywords: matrix functions, Toeplitz matrices, infinite matrices.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
This work was carried out with the support of the Gruppo Nazionale per il Calcolo Scientifico, Instituto Nazionale di Alta Matematica “Francesco Severi”.
Received: 19.11.2016 and 04.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.548.5+517.984.51+512.643.8
MSC: Primary 15B05, 65F60; Secondary 47A60, 47B35
Language: English
Original paper language: Russian
Citation: D. A. Bini, S. Massei, B. Meini, “On functions of quasi-Toeplitz matrices”, Sb. Math., 208:11 (2017), 1628–1645
Citation in format AMSBIB
\Bibitem{BinMasMei17}
\by D.~A.~Bini, S.~Massei, B.~Meini
\paper On functions of quasi-Toeplitz matrices
\jour Sb. Math.
\yr 2017
\vol 208
\issue 11
\pages 1628--1645
\mathnet{http://mi.mathnet.ru/eng/sm8864}
\crossref{https://doi.org/10.1070/SM8864}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717197}
\zmath{https://zbmath.org/?q=an:1388.15006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1628B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000423477000004}
\elib{https://elibrary.ru/item.asp?id=30512344}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049170051}
Linking options:
  • https://www.mathnet.ru/eng/sm8864
  • https://doi.org/10.1070/SM8864
  • https://www.mathnet.ru/eng/sm/v208/i11/p56
  • This publication is cited in the following 14 articles:
    1. Hongjia Chen, Hyun-Min Kim, Jie Meng, “Algorithms for Square Root of Semi-Infinite Quasi-Toeplitz M-Matrices”, J Sci Comput, 99:3 (2024)  crossref
    2. Hcini Fahd, Yulin Zhang, “New algorithm for solving pentadiagonal CUPL-Toeplitz linear systems”, Comp. Appl. Math., 42:3 (2023)  crossref  mathscinet
    3. Pierre Riedinger, Jamal Daafouz, “Solving Infinite-Dimensional Harmonic Lyapunov and Riccati Equations”, IEEE Trans. Automat. Contr., 68:10 (2023), 5938  crossref  mathscinet
    4. Marina Popolizio, Springer INdAM Series, 50, Fractional Differential Equations, 2023, 75  crossref
    5. J. Meng, “Theoretical and computational properties of semi-infinite quasi-Toeplitz M-matrices”, Linear Algebra and its Applications, 653 (2022), 66–85  crossref  mathscinet
    6. Ya. Fu, X. Jiang, Zh. Jiang, S. Jhang, “Fast algorithms for finding the solution of CUPL-Toeplitz linear system from Markov chain”, Appl. Math. Comput., 396 (2021), 125859  crossref  mathscinet  isi
    7. D. A. Bini, B. Iannazzo, J. Meng, “Algorithms for approximating means of semi-infinite quasi-Toeplitz matrices”, Geometric Science of Information (Gsi 2021), Lecture Notes in Computer Science, 12829, eds. F. Nielsen, F. Barbaresco, Springer, 2021, 405–414  crossref  mathscinet  isi
    8. Kim H.-M., Meng J., “Structured Perturbation Analysis For An Infinite Size Quasi-Toeplitz Matrix Equation With Applications”, Bit, 61:3 (2021), 859–879  crossref  mathscinet  isi
    9. L. Robol, “Rational krylov and adi iteration for infinite size quasi-toeplitz matrix equations”, Linear Alg. Appl., 604 (2020), 210–235  crossref  mathscinet  zmath  isi
    10. D. A. Bini, S. Massei, B. Meini, L. Robol, “A computational framework for two-dimensional random walks with restarts”, SIAM J. Sci. Comput., 42:4 (2020), A2108–A2133  crossref  mathscinet  zmath  isi  scopus
    11. D. A. Bini, B. Meini, “On the exponential of semi-infinite quasi-toeplitz matrices”, Numer. Math., 141:2 (2019), 319–351  crossref  mathscinet  zmath  isi  scopus
    12. D. A. Bini, S. Massei, L. Robol, “Quasi-toeplitz matrix arithmetic: a MATLAB toolbox”, Numer. Algorithms, 81:2 (2019), 741–769  crossref  mathscinet  zmath  isi  scopus
    13. S. Belhaj, F. Hcini, Yu. Zhang, “A fast method for solving a block tridiagonal quasi-toeplitz linear system”, Port Math., 76:3-4 (2019), 287–299  crossref  mathscinet  zmath  isi
    14. D. A. Bini, S. Massei, B. Meini, “Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes”, Math. Comp., 87:314 (2018), 2811–2830  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:440
    Russian version PDF:45
    English version PDF:44
    References:67
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025