Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 11, Pages 1628–1645
DOI: https://doi.org/10.1070/SM8864
(Mi sm8864)
 

This article is cited in 14 scientific papers (total in 14 papers)

On functions of quasi-Toeplitz matrices

D. A. Binia, S. Masseib, B. Meinia

a Dipartimento di Matematica, Università di Pisa, Italy
b Scuola Normale Superiore, Pisa, Italy
References:
Abstract: Let $a(z)=\sum_{i\in\mathbb Z}a_iz^i$ be a complex-valued function, defined for $|z|=1$, such that $\sum_{i=-\infty}^{+\infty} |ia_i|<\infty$. Consider the semi-infinite Toeplitz matrix $T(a)=(t_{i,j})_{i,j\in\mathbb Z^+}$ associated with the symbol $a(z)$ such that $t_{i,j}=a_{j-i}$. A quasi-Toeplitz matrix associated with the symbol $a(z)$ is a matrix of the form $A=T(a)+E$ where $E=(e_{i,j})$, $\sum_{i,j\in\mathbb Z^+}|e_{i,j}|<\infty$, and is called a $\mathrm{QT}$-matrix. Given a function $f(x)$ and a $\mathrm{QT}$-matrix $M$, we provide conditions under which $f(M)$ is well defined and is a $\mathrm{QT}$-matrix. Moreover, we introduce a parametrization of $\mathrm{QT}$-matrices and algorithms for the computation of $f(M)$. We treat the case where $f(x)$ is given in terms of power series and the case where $f(x)$ is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction.
Bibliography: 27 titles.
Keywords: matrix functions, Toeplitz matrices, infinite matrices.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
This work was carried out with the support of the Gruppo Nazionale per il Calcolo Scientifico, Instituto Nazionale di Alta Matematica “Francesco Severi”.
Received: 19.11.2016 and 04.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.548.5+517.984.51+512.643.8
MSC: Primary 15B05, 65F60; Secondary 47A60, 47B35
Language: English
Original paper language: Russian
Citation: D. A. Bini, S. Massei, B. Meini, “On functions of quasi-Toeplitz matrices”, Sb. Math., 208:11 (2017), 1628–1645
Citation in format AMSBIB
\Bibitem{BinMasMei17}
\by D.~A.~Bini, S.~Massei, B.~Meini
\paper On functions of quasi-Toeplitz matrices
\jour Sb. Math.
\yr 2017
\vol 208
\issue 11
\pages 1628--1645
\mathnet{http://mi.mathnet.ru//eng/sm8864}
\crossref{https://doi.org/10.1070/SM8864}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717197}
\zmath{https://zbmath.org/?q=an:1388.15006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1628B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000423477000004}
\elib{https://elibrary.ru/item.asp?id=30512344}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049170051}
Linking options:
  • https://www.mathnet.ru/eng/sm8864
  • https://doi.org/10.1070/SM8864
  • https://www.mathnet.ru/eng/sm/v208/i11/p56
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:387
    Russian version PDF:41
    English version PDF:20
    References:58
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024