Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 6, Pages 840–849
DOI: https://doi.org/10.1070/SM8852
(Mi sm8852)
 

Galois theory, the classification of finite simple groups and a dense winding of a torus

D. D. Kiselev

Russian Foreign Trade Academy, Moscow
References:
Abstract: The Galois group of the Zelikin-Lokutsievskii polynomial is studied. It is established that, in the generalized Fuller problem, for any positive integer $k\leqslant 249\,994\,914$ there is an optimal control going along a dense winding of the $k$-dimensional torus in finite time. In the generalized Fuller problem, under the assumption that the Zelikin-Lokutsievskiy polynomials are irreducible over the field of rational numbers for almost all prime powers it is shown that there is an optimal control passing along a dense winding of the torus of any preassigned dimension in finite time. Many examples are considered.
Bibliography: 7 titles.
Keywords: optimal control, dense winding, Galois group, classification of finite simple groups, Wolstenholme primes.
Received: 21.10.2016 and 13.03.2018
Bibliographic databases:
Document Type: Article
UDC: 512.623.3+512.622+517.977.5
MSC: Primary 11R09, 11R32; Secondary 49K15
Language: English
Original paper language: Russian
Citation: D. D. Kiselev, “Galois theory, the classification of finite simple groups and a dense winding of a torus”, Sb. Math., 209:6 (2018), 840–849
Citation in format AMSBIB
\Bibitem{Kis18}
\by D.~D.~Kiselev
\paper Galois theory, the classification of finite simple groups and a~dense winding of a~torus
\jour Sb. Math.
\yr 2018
\vol 209
\issue 6
\pages 840--849
\mathnet{http://mi.mathnet.ru//eng/sm8852}
\crossref{https://doi.org/10.1070/SM8852}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807906}
\zmath{https://zbmath.org/?q=an:1425.11170}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..840K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441840600004}
\elib{https://elibrary.ru/item.asp?id=34940685}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052365819}
Linking options:
  • https://www.mathnet.ru/eng/sm8852
  • https://doi.org/10.1070/SM8852
  • https://www.mathnet.ru/eng/sm/v209/i6/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:422
    Russian version PDF:79
    English version PDF:14
    References:38
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024