Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 10, Pages 1463–1481
DOI: https://doi.org/10.1070/SM8843
(Mi sm8843)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$

A. K. Dronova, V. M. Kaplitskiibc

a Rostov State University of Economics, Rostov-on-Don
b Southern Federal University, Rostov-on-Don
c Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
References:
Abstract: A proof is presented that an arbitrary complemented subspace of a Köthe nuclear space from class $(d_1)$ has a basis, provided that the relevant Köthe matrix is regular in the sense of Dragilev. It is also shown that each such subspace must have a basis that is quasi-equivalent to a part of the canonical unit-vector basis.
Bibliography: 21 titles.
Keywords: basis, Köthe nuclear spaces, Pelczyński's conjecture, complemented subspaces.
Received: 15.10.2016 and 03.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.982.254
MSC: Primary 46A35, 46A45; Secondary 46B70
Language: English
Original paper language: Russian
Citation: A. K. Dronov, V. M. Kaplitskii, “On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$”, Sb. Math., 209:10 (2018), 1463–1481
Citation in format AMSBIB
\Bibitem{DroKap18}
\by A.~K.~Dronov, V.~M.~Kaplitskii
\paper On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1463--1481
\mathnet{http://mi.mathnet.ru//eng/sm8843}
\crossref{https://doi.org/10.1070/SM8843}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859409}
\zmath{https://zbmath.org/?q=an:1425.46003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300003}
\elib{https://elibrary.ru/item.asp?id=35601301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059198218}
Linking options:
  • https://www.mathnet.ru/eng/sm8843
  • https://doi.org/10.1070/SM8843
  • https://www.mathnet.ru/eng/sm/v209/i10/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024