Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 6, Pages 863–877
DOI: https://doi.org/10.1070/SM8837
(Mi sm8837)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete uniqueness sets for functions with spectral gaps

Alexander Olevskiia, Alexander Ulanovskiib

a School of Mathematical Sciences, Tel Aviv University, Israel
b University of Stavanger, Norway
References:
Abstract: It is well known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets. We show that the same is true for a much wider range of spaces of continuous functions. In particular, Sobolev spaces have this property whenever $S$ is a set of infinite measure having ‘periodic gaps’. The periodicity condition is crucial. For sets $S$ with randomly distributed gaps, we show that uniformly discrete sets $\Lambda$ satisfy a strong non-uniqueness property: every discrete function $c(\lambda)\in l^2(\Lambda)$ can be interpolated by an analytic $L^2$-function with spectrum in $S$.
Bibliography: 9 titles.
Keywords: Fourier transform, spectral gap, discrete uniqueness set, Sobolev space.
Funding agency Grant number
Israel Science Foundation
The first author was partially supported by an Israel Science Foundation grant.
Received: 13.10.2016 and 06.02.2017
Bibliographic databases:
Document Type: Article
UDC: 517.443+517.518.32+517.538.2
MSC: Primary 42A38; Secondary 46E35
Language: English
Original paper language: Russian
Citation: Alexander Olevskii, Alexander Ulanovskii, “Discrete uniqueness sets for functions with spectral gaps”, Sb. Math., 208:6 (2017), 863–877
Citation in format AMSBIB
\Bibitem{OleUla17}
\by Alexander Olevskii, Alexander Ulanovskii
\paper Discrete uniqueness sets for functions with spectral gaps
\jour Sb. Math.
\yr 2017
\vol 208
\issue 6
\pages 863--877
\mathnet{http://mi.mathnet.ru//eng/sm8837}
\crossref{https://doi.org/10.1070/SM8837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3659581}
\zmath{https://zbmath.org/?q=an:1406.42006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..863O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408176700005}
\elib{https://elibrary.ru/item.asp?id=29255292}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027978054}
Linking options:
  • https://www.mathnet.ru/eng/sm8837
  • https://doi.org/10.1070/SM8837
  • https://www.mathnet.ru/eng/sm/v208/i6/p130
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:571
    Russian version PDF:357
    English version PDF:26
    References:68
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024