Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 81, Issue 1, Pages 235–259
DOI: https://doi.org/10.1070/SM1995v081n01ABEH003623
(Mi sm882)
 

This article is cited in 6 scientific papers (total in 6 papers)

The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers

A. V. Fursikova, O. Yu. Imanuvilovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Forest University
References:
Abstract: The infinite chain of Friedman–Keller equations is studied that describes the evolution of the entire set of moments of a statistical solution of an abstract analogue of the Navier–Stokes system. The problem of closure of this chain is investigated. This problem consists in constructing a sequence of problems $\mathfrak{A}_N=0$ of $N$ unknown functions whose solutions $M^N=(M_1^N,\dots,M_N^N,0,0,\dots)$ approximate the system of moments $M=(M_1,\dots,M_k,\dots)$ as $N\to+\infty$. The case of large Reynolds numbers is considered. Exponential rate of convergence of $~M^N$ to $M$ as $N\to\infty$ is proved.
Received: 24.03.1993
Bibliographic databases:
UDC: 517.958
Language: English
Original paper language: Russian
Citation: A. V. Fursikov, O. Yu. Imanuvilov, “The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 235–259
Citation in format AMSBIB
\Bibitem{FurIma94}
\by A.~V.~Fursikov, O.~Yu.~Imanuvilov
\paper The rate of convergence of approximations for the closure of the Friedman--Keller chain in the case of large Reynolds numbers
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 81
\issue 1
\pages 235--259
\mathnet{http://mi.mathnet.ru//eng/sm882}
\crossref{https://doi.org/10.1070/SM1995v081n01ABEH003623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1264777}
\zmath{https://zbmath.org/?q=an:0827.35100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995QZ14400013}
Linking options:
  • https://www.mathnet.ru/eng/sm882
  • https://doi.org/10.1070/SM1995v081n01ABEH003623
  • https://www.mathnet.ru/eng/sm/v185/i2/p115
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:504
    Russian version PDF:166
    English version PDF:11
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024