Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 2, Pages 145–162
DOI: https://doi.org/10.1070/SM8800
(Mi sm8800)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence of Lipschitz selections of the Steiner map

B. B. Bednov, P. A. Borodin, K. V. Chesnokova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map $\mathrm{St}_n$, which associates with $n$ points of a Banach space $X$ the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere $S(X)$ of $X$, its dimension, and the number $n$. For $n\geqslant 4$ general conditions are obtained on the space $X$ under which $\mathrm{St}_n$ admits no Lipschitz selection. When $X$ is finite dimensional it is shown that, if $n\geqslant 4$ is even, the map $\mathrm{St}_n$ has a Lipschitz selection if and only if $S(X)$ is a finite polytope; this is not true if $n\geqslant 3$ is odd. For $n=3$ the (single-valued) map $\mathrm{St}_3$ is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces.
Bibliography: 21 titles.
Keywords: Banach space, Steiner point, Lipschitz selection, linearity coefficient.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08335-а
18-01-00333-а
Dynasty Foundation
Ministry of Education and Science of the Russian Federation НШ 6222.2018.1
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 15-01-08335-а and 18-01-00333-а) and the programme of the President of the Russian Federation for the state support of leading scientific schools (grant no. НШ-6222.2018.1). Borodin's work was also supported by the Dmitry Zimin Dynasty Foundation.
Received: 20.08.2016 and 08.03.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 2, Pages 3–21
DOI: https://doi.org/10.4213/sm8800
Bibliographic databases:
Document Type: Article
UDC: 517.982.256+517.988.38
MSC: 41A65, 52A40
Language: English
Original paper language: Russian
Citation: B. B. Bednov, P. A. Borodin, K. V. Chesnokova, “Existence of Lipschitz selections of the Steiner map”, Mat. Sb., 209:2 (2018), 3–21; Sb. Math., 209:2 (2018), 145–162
Citation in format AMSBIB
\Bibitem{BedBorChe18}
\by B.~B.~Bednov, P.~A.~Borodin, K.~V.~Chesnokova
\paper Existence of Lipschitz selections of the Steiner map
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 2
\pages 3--21
\mathnet{http://mi.mathnet.ru/sm8800}
\crossref{https://doi.org/10.4213/sm8800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749627}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..145B}
\elib{https://elibrary.ru/item.asp?id=32428130}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 2
\pages 145--162
\crossref{https://doi.org/10.1070/SM8800}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431983100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046532813}
Linking options:
  • https://www.mathnet.ru/eng/sm8800
  • https://doi.org/10.1070/SM8800
  • https://www.mathnet.ru/eng/sm/v209/i2/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:697
    Russian version PDF:77
    English version PDF:26
    References:70
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024