Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 1, Pages 122–144
DOI: https://doi.org/10.1070/SM8785
(Mi sm8785)
 

This article is cited in 5 scientific papers (total in 5 papers)

A uniform Tauberian theorem in dynamic games

D. V. Khlopin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems.
Bibliography: 31 titles.
Keywords: dynamic programming principle, games with a saddle point, Tauberian theorem.
Received: 14.07.2016 and 17.02.2017
Bibliographic databases:
Document Type: Article
UDC: 519.837.4+517.521.75
MSC: 40E05, 91A25
Language: English
Original paper language: Russian
Citation: D. V. Khlopin, “A uniform Tauberian theorem in dynamic games”, Sb. Math., 209:1 (2018), 122–144
Citation in format AMSBIB
\Bibitem{Khl18}
\by D.~V.~Khlopin
\paper A~uniform Tauberian theorem in dynamic games
\jour Sb. Math.
\yr 2018
\vol 209
\issue 1
\pages 122--144
\mathnet{http://mi.mathnet.ru//eng/sm8785}
\crossref{https://doi.org/10.1070/SM8785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740299}
\zmath{https://zbmath.org/?q=an:1397.40011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..122K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428795800006}
\elib{https://elibrary.ru/item.asp?id=30762122}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045692569}
Linking options:
  • https://www.mathnet.ru/eng/sm8785
  • https://doi.org/10.1070/SM8785
  • https://www.mathnet.ru/eng/sm/v209/i1/p127
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:559
    Russian version PDF:49
    English version PDF:23
    References:71
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024