Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 10, Pages 1458–1470
DOI: https://doi.org/10.1070/SM8708
(Mi sm8708)
 

This article is cited in 11 scientific papers (total in 11 papers)

The spaces of non-contractible closed curves in compact space forms

I. A. Taimanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The rational equivariant cohomology of noncontractible loop spaces is calculated for compact space forms. It is also shown how to use these calculations to establish the existence of closed geodesics.
Bibliography: 18 titles.
Keywords: spaces of closed curves, rational cohomologies, closed geodesics.
Funding agency Grant number
Russian Science Foundation 14-11-00441
This research was supported by the Russian Science Foundation (project no. 14-11-00441).
Received: 31.03.2016 and 20.07.2016
Bibliographic databases:
Document Type: Article
UDC: 515.146+517.974
MSC: 53C22, 53C60, 55P35
Language: English
Original paper language: Russian
Citation: I. A. Taimanov, “The spaces of non-contractible closed curves in compact space forms”, Sb. Math., 207:10 (2016), 1458–1470
Citation in format AMSBIB
\Bibitem{Tai16}
\by I.~A.~Taimanov
\paper The spaces of non-contractible closed curves in compact space forms
\jour Sb. Math.
\yr 2016
\vol 207
\issue 10
\pages 1458--1470
\mathnet{http://mi.mathnet.ru/eng/sm8708}
\crossref{https://doi.org/10.1070/SM8708}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588974}
\zmath{https://zbmath.org/?q=an:1381.53072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1458T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848500006}
\elib{https://elibrary.ru/item.asp?id=27350046}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007448606}
Linking options:
  • https://www.mathnet.ru/eng/sm8708
  • https://doi.org/10.1070/SM8708
  • https://www.mathnet.ru/eng/sm/v207/i10/p105
  • This publication is cited in the following 11 articles:
    1. Hui Liu, Yu Chen Wang, “Generic Existence of Infinitely Many Non-contractible Closed Geodesics on Compact Space Forms”, Acta. Math. Sin.-English Ser., 40:7 (2024), 1674  crossref
    2. Hui Liu, Jian Wang, Jingzhi Yan, “The growth of the number of periodic orbits for annulus homeomorphisms and non-contractible closed geodesics on Riemannian or FinslerRP2”, Journal of Differential Equations, 357 (2023), 362  crossref
    3. Liu S., Wang W., “A Review of the Index Method in Closed Geodesic Problem”, Acta. Math. Sin.-English Ser., 38:1 (2022), 85–96  crossref  mathscinet  isi  scopus
    4. Duan H.G., Liu H., “The Non-Contractibility of Closed Geodesics on Finsler Double-Struck Capital Rpn”, Acta. Math. Sin.-English Ser., 38:1 (2022), 1–21  crossref  mathscinet  isi
    5. Hui Liu, Yuchen Wang, “Multiplicity of non-contractible closed geodesics on Finsler compact space forms”, Calc. Var., 61:6 (2022)  crossref
    6. H. Duan, Y. Long, Ch. Zhu, “Index iteration theories for periodic orbits: old and new”, Nonlinear Anal.-Theory Methods Appl., 201:SI (2020), 111999  crossref  mathscinet  zmath  isi
    7. Wang W., “Two Closed Geodesics on Compact Bumpy Finsler Manifolds”, Asian J. Math., 24:6 (2020), 985–994  crossref  mathscinet  isi
    8. H. Liu, “The optimal lower bound estimation of the number of closed geodesics on finsler compact space form s2n+1/gamma”, Calc. Var. Partial Differ. Equ., 58:3 (2019), 107  crossref  mathscinet  isi
    9. H. Liu, Y. Long, Y. Xiao, “The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form”, Discrete Contin. Dyn. Syst., 38:8 (2018), 3803–3829  crossref  mathscinet  zmath  isi  scopus
    10. H. Liu, “The Fadell-Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^n$”, J. Differential Equations, 262:3 (2017), 2540–2553  crossref  mathscinet  zmath  isi  scopus
    11. H. Liu, Y. Xiao, “Resonance identity and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^n$”, Adv. Math., 318 (2017), 158–190  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:610
    Russian version PDF:80
    English version PDF:20
    References:96
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025