Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 11, Pages 1512–1536
DOI: https://doi.org/10.1070/SM8705
(Mi sm8705)
 

This article is cited in 10 scientific papers (total in 10 papers)

On volumes of classical supermanifolds

Th. Th. Voronovab

a University of Manchester, Manchester, UK
b Tomsk State University
References:
Abstract: We consider the volumes of classical supermanifolds (such as the supersphere, complex projective superspace, Stiefel and Grassmann supermanifolds) with respect to natural metrics or symplectic structures. We show that the formulae for the volumes of these supermanifolds can be obtained from the formulae for the volumes of the corresponding ordinary manifolds (under some universal normalization of the volume) by analytic continuation with respect to parameters.
The volumes of nontrivial supermanifolds may be identically equal to zero. In the 1970s Berezin showed that the total Haar measure of the unitary supergroup $\mathbf{U}(n|m)$ vanishes except in the cases $m=0$ and $n=0$, when the supergroup is the ordinary unitary group $\mathbf{U}(n)$ or $\mathbf{U}(m)$. Some time ago Witten conjectured that the Liouville volume of a compact even symplectic supermanifold is always equal to zero (except for ordinary manifolds). We give counterexamples to this conjecture, present a simple explanation of Berezin's theorem, and generalize this theorem to the Stiefel supermanifold $\mathbf{V}_{r|s}(\mathbf C^{n|m})$. We mention a connection with recent work of Mkrtchyan and Veselov on universal formulae in Lie algebra theory.
Bibliography: 32 titles.
Keywords: supermanifolds, volume, symplectic structure, Riemannian metric, Riemannian submersion, Berezin integral.
Received: 29.03.2016 and 06.06.2016
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: English
Original paper language: Russian
Citation: Th. Th. Voronov, “On volumes of classical supermanifolds”, Sb. Math., 207:11 (2016), 1512–1536
Citation in format AMSBIB
\Bibitem{Vor16}
\by Th.~Th.~Voronov
\paper On volumes of classical supermanifolds
\jour Sb. Math.
\yr 2016
\vol 207
\issue 11
\pages 1512--1536
\mathnet{http://mi.mathnet.ru//eng/sm8705}
\crossref{https://doi.org/10.1070/SM8705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588978}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1512V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393619200002}
\elib{https://elibrary.ru/item.asp?id=27350059}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011559317}
Linking options:
  • https://www.mathnet.ru/eng/sm8705
  • https://doi.org/10.1070/SM8705
  • https://www.mathnet.ru/eng/sm/v207/i11/p25
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:431
    Russian version PDF:74
    English version PDF:22
    References:69
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024