Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 2, Pages 187–205
DOI: https://doi.org/10.1070/SM8687
(Mi sm8687)
 

This article is cited in 6 scientific papers (total in 6 papers)

Continued fractions with limit periodic coefficients

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction.
Bibliography: 26 titles.
Keywords: continued fractions, Hankel determinants, meromorphic extension, transfinite diameter.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 29.02.2016 and 27.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30A14, 30B70
Language: English
Original paper language: Russian
Citation: V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
Citation in format AMSBIB
\Bibitem{Bus18}
\by V.~I.~Buslaev
\paper Continued fractions with limit periodic coefficients
\jour Sb. Math.
\yr 2018
\vol 209
\issue 2
\pages 187--205
\mathnet{http://mi.mathnet.ru//eng/sm8687}
\crossref{https://doi.org/10.1070/SM8687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749629}
\zmath{https://zbmath.org/?q=an:1393.30005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..187B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431983100003}
\elib{https://elibrary.ru/item.asp?id=32428132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036648124}
Linking options:
  • https://www.mathnet.ru/eng/sm8687
  • https://doi.org/10.1070/SM8687
  • https://www.mathnet.ru/eng/sm/v209/i2/p47
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024