Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 2, Pages 269–284
DOI: https://doi.org/10.1070/SM8686
(Mi sm8686)
 

This article is cited in 3 scientific papers (total in 3 papers)

An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential

S. A. Stepin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: For the Schrödinger operator whose potential is rapidly decreasing at infinity, an estimate for the number of eigenvalues is given, thus answering a question going back to Gelfand. The case of three-dimensional configuration space is chosen for simplicity of presentation; all the results formulated in the paper can be extended to an arbitrary number of degrees of freedom.
Bibliography: 19 titles.
Keywords: Schrödinger operator, Fredholm determinant, total multiplicity of eigenvalues.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00117-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 16-01-00117-a).
Received: 01.03.2016 and 24.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.984.56
MSC: 35J10, 35P15
Language: English
Original paper language: Russian
Citation: S. A. Stepin, “An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential”, Sb. Math., 208:2 (2017), 269–284
Citation in format AMSBIB
\Bibitem{Ste17}
\by S.~A.~Stepin
\paper An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential
\jour Sb. Math.
\yr 2017
\vol 208
\issue 2
\pages 269--284
\mathnet{http://mi.mathnet.ru//eng/sm8686}
\crossref{https://doi.org/10.1070/SM8686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608040}
\zmath{https://zbmath.org/?q=an:1379.35083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..269S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401433200006}
\elib{https://elibrary.ru/item.asp?id=28172165}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017752013}
Linking options:
  • https://www.mathnet.ru/eng/sm8686
  • https://doi.org/10.1070/SM8686
  • https://www.mathnet.ru/eng/sm/v208/i2/p104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024