Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 11, Pages 1601–1624
DOI: https://doi.org/10.1070/SM8682
(Mi sm8682)
 

This article is cited in 3 scientific papers (total in 3 papers)

Projective toric polynomial generators in the unitary cobordism ring

G. D. Solomadina, Yu. M. Ustinovskiyb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Department of Mathematics, Princeton University, USA
References:
Abstract: According to Milnor and Novikov's classical result, the unitary cobordism ring is isomorphic to a graded polynomial ring with countably many generators: $\Omega^U_*\simeq \mathbb{Z}[a_1,a_2,\dots]$, $\deg(a_i)=2i$. In this paper we solve the well-known problem of constructing geometric representatives for the $a_i$ among smooth projective toric varieties, $a_n=[X^{n}]$, $\dim_\mathbb{C} X^{n}=n$. Our proof uses a family of equivariant modifications (birational isomorphisms) $B_k(X)\to X$ of an arbitrary complex manifold $X$ of complex dimension $n$ ($n\geqslant 2$, $k=0,\dots,n-2$). The key fact is that the change of the Milnor number under these modifications depends only on the dimension $n$ and the number $k$ and does not depend on the manifold $X$ itself.
Bibliography: 22 titles.
Keywords: unitary cobordism, toric varieties, blow-ups, convex polytopes.
Funding agency Grant number
Russian Science Foundation 14-11-00414
G. D. Solomadin's research was supported by a grant from the Russian Science Foundation (project no. 14-11-00414) in the Steklov Mathematical Institute of the Russian Academy of Sciences. Sections 1, 2.2, 3, 4.1, 5.2 and 6 are the work of Yu. M. Ustinovskiy. The other sections are due to G. D. Solomadin.
Received: 25.02.2016 and 01.07.2016
Bibliographic databases:
Document Type: Article
UDC: 515.165
MSC: Primary 14M25; Secondary 55N22, 57R77, 52B20
Language: English
Original paper language: Russian
Citation: G. D. Solomadin, Yu. M. Ustinovskiy, “Projective toric polynomial generators in the unitary cobordism ring”, Sb. Math., 207:11 (2016), 1601–1624
Citation in format AMSBIB
\Bibitem{SolUst16}
\by G.~D.~Solomadin, Yu.~M.~Ustinovskiy
\paper Projective toric polynomial generators in the unitary cobordism ring
\jour Sb. Math.
\yr 2016
\vol 207
\issue 11
\pages 1601--1624
\mathnet{http://mi.mathnet.ru//eng/sm8682}
\crossref{https://doi.org/10.1070/SM8682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588982}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1601S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393619200006}
\elib{https://elibrary.ru/item.asp?id=27350069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011551515}
Linking options:
  • https://www.mathnet.ru/eng/sm8682
  • https://doi.org/10.1070/SM8682
  • https://www.mathnet.ru/eng/sm/v207/i11/p127
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:469
    Russian version PDF:72
    English version PDF:21
    References:48
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024