Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 11, Pages 1562–1581
DOI: https://doi.org/10.1070/SM8679
(Mi sm8679)
 

This article is cited in 1 scientific paper (total in 1 paper)

On some problems related to the Hilbert-Smith conjecture

A. N. Dranishnikov

Department of Mathematics, University of Florida, Gainesville, FL, USA
References:
Abstract: The Hilbert-Smith conjecture claims that if a compact group $G$ acts freely on a manifold, then it is a Lie group. For a finite-dimensional orbit space a reduction of the Hilbert-Smith conjecture to certain other problems in geometric topology is presented; in these the key problem is the existence of an essential sequence of lens spaces of increasing dimension.
Bibliography: 52 titles.
Keywords: free action of a group, lens spaces, $K$-theory, completely regular maps.
Funding agency Grant number
National Science Foundation DMS-1304627
This research was supported by the NSF (grant no. DMS-1304627).
Received: 22.02.2016 and 19.06.2016
Bibliographic databases:
Document Type: Article
UDC: 515.124+515.127+515.16
MSC: Primary 55M30; Secondary 53C23, 57N65
Language: English
Original paper language: Russian
Citation: A. N. Dranishnikov, “On some problems related to the Hilbert-Smith conjecture”, Sb. Math., 207:11 (2016), 1562–1581
Citation in format AMSBIB
\Bibitem{Dra16}
\by A.~N.~Dranishnikov
\paper On some problems related to the Hilbert-Smith conjecture
\jour Sb. Math.
\yr 2016
\vol 207
\issue 11
\pages 1562--1581
\mathnet{http://mi.mathnet.ru//eng/sm8679}
\crossref{https://doi.org/10.1070/SM8679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588980}
\zmath{https://zbmath.org/?q=an:1371.57029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1562D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393619200004}
\elib{https://elibrary.ru/item.asp?id=27350064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011578889}
Linking options:
  • https://www.mathnet.ru/eng/sm8679
  • https://doi.org/10.1070/SM8679
  • https://www.mathnet.ru/eng/sm/v207/i11/p82
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024