Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 9, Pages 1353–1367
DOI: https://doi.org/10.1070/SM8677
(Mi sm8677)
 

Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle

A. M. Zhukovaa, G. Yu. Paninabc

a St. Petersburg State University, Faculty of Liberal Arts and Sciences
b St. Petersburg Institute for Informatics and Automation of RAS
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory.
Bibliography: 12 entries.
Keywords: polygonal linkage, configuration space, cell complex, discrete vector field, exact Morse function.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-02021-а
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-02021-a).
Received: 22.02.2016 and 05.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 55R80
Language: English
Original paper language: Russian
Citation: A. M. Zhukova, G. Yu. Panina, “Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle”, Sb. Math., 208:9 (2017), 1353–1367
Citation in format AMSBIB
\Bibitem{ZhuPan17}
\by A.~M.~Zhukova, G.~Yu.~Panina
\paper Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a~circle
\jour Sb. Math.
\yr 2017
\vol 208
\issue 9
\pages 1353--1367
\mathnet{http://mi.mathnet.ru//eng/sm8677}
\crossref{https://doi.org/10.1070/SM8677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3691717}
\zmath{https://zbmath.org/?q=an:1386.55020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1353Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416409300005}
\elib{https://elibrary.ru/item.asp?id=29864989}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039161724}
Linking options:
  • https://www.mathnet.ru/eng/sm8677
  • https://doi.org/10.1070/SM8677
  • https://www.mathnet.ru/eng/sm/v208/i9/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024