Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 12, Pages 1728–1744
DOI: https://doi.org/10.1070/SM8655
(Mi sm8655)
 

This article is cited in 1 scientific paper (total in 1 paper)

A universal criterion for quasi-analytic classes in Jordan domains

R. A. Gaisin

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences
References:
Abstract: Carleman classes in Jordan domains in the complex plane are investigated. A criterion for regular Carleman classes to be quasi-analytic is established, which is universal in a certain sense for all weakly uniform domains. The proof is based on a solution of the Dirichlet problem with unbounded boundary function, and a result on bounds for the harmonic measure due to Beurling plays a substantial role.
Bibliography: 20 titles.
Keywords: quasi-analytic classes in Jordan domains, harmonic measure, Dirichlet problem.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00095-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00095-a).
Received: 24.12.2015 and 18.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D60
Language: English
Original paper language: Russian
Citation: R. A. Gaisin, “A universal criterion for quasi-analytic classes in Jordan domains”, Sb. Math., 209:12 (2018), 1728–1744
Citation in format AMSBIB
\Bibitem{Gai18}
\by R.~A.~Gaisin
\paper A~universal criterion for quasi-analytic classes in Jordan domains
\jour Sb. Math.
\yr 2018
\vol 209
\issue 12
\pages 1728--1744
\mathnet{http://mi.mathnet.ru//eng/sm8655}
\crossref{https://doi.org/10.1070/SM8655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881799}
\zmath{https://zbmath.org/?q=an:1411.30024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1728G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458805100003}
\elib{https://elibrary.ru/item.asp?id=36448132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062892255}
Linking options:
  • https://www.mathnet.ru/eng/sm8655
  • https://doi.org/10.1070/SM8655
  • https://www.mathnet.ru/eng/sm/v209/i12/p57
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024