Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 12, Pages 1743–1777
DOI: https://doi.org/10.1070/SM8633
(Mi sm8633)
 

This article is cited in 8 scientific papers (total in 8 papers)

A sharp lower bound for the sum of a sine series with convex coefficients

A. P. Solodov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The sum of a sine series $g(\mathbf b,x)=\sum_{k=1}^\infty b_k\sin kx$ with coefficients forming a convex sequence $\mathbf b$ is known to be positive on the interval $(0,\pi)$. Its values near zero are conventionally evaluated using the Salem function $v(\mathbf b,x)=x\sum_{k=1}^{m(x)} kb_k$, $m(x)=[\pi/x]$. In this paper it is proved that $2\pi^{-2}v(\mathbf b,x)$ is not a minorant for $g(\mathbf b,x)$. The modified Salem function $v_0(\mathbf b,x)=x\bigl(\sum_{k=1}^{m(x)-1} kb_k+(1/2)m(x)b_{m(x)}\bigr)$ is shown to satisfy the lower bound $g(\mathbf b,x)>2\pi^{-2}v_0(\mathbf b,x)$ in some right neighbourhood of zero. This estimate is shown to be sharp on the class of convex sequences $\mathbf b$. Moreover, the upper bound for $g(\mathbf b,x)$ is refined on the class of monotone sequences $\mathbf b$.
Bibliography: 11 titles.
Keywords: sine series with monotone coefficients, sine series with convex coefficients.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00417-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 14-01-00417-a).
Received: 10.11.2015
Bibliographic databases:
Document Type: Article
UDC: 517.518.4
MSC: 40A25, 42A32
Language: English
Original paper language: Russian
Citation: A. P. Solodov, “A sharp lower bound for the sum of a sine series with convex coefficients”, Sb. Math., 207:12 (2016), 1743–1777
Citation in format AMSBIB
\Bibitem{Sol16}
\by A.~P.~Solodov
\paper A~sharp lower bound for the sum of a~sine series with convex coefficients
\jour Sb. Math.
\yr 2016
\vol 207
\issue 12
\pages 1743--1777
\mathnet{http://mi.mathnet.ru//eng/sm8633}
\crossref{https://doi.org/10.1070/SM8633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588989}
\zmath{https://zbmath.org/?q=an:1373.42005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1743S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394542200007}
\elib{https://elibrary.ru/item.asp?id=27485046}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014241828}
Linking options:
  • https://www.mathnet.ru/eng/sm8633
  • https://doi.org/10.1070/SM8633
  • https://www.mathnet.ru/eng/sm/v207/i12/p124
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:713
    Russian version PDF:180
    English version PDF:26
    References:110
    First page:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024