Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 9, Pages 1319–1334
DOI: https://doi.org/10.1070/SM8610
(Mi sm8610)
 

This article is cited in 5 scientific papers (total in 5 papers)

Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

J. Hamab, J. Leeb

a Seoul National University, Republic of Korea (South)
b Hongik University, Seoul, Republic of Korea (South)
References:
Abstract: We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the $A$-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the $A$-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope $-4n+2$ turns out to be $2$.
Bibliography: 39 titles.
Keywords: Chern-Simons invariant, twist knot, orbifold, $A$-polynomial, edge polynomial.
Received: 03.10.2015 and 28.01.2016
Russian version:
Matematicheskii Sbornik, 2016, Volume 207, Number 9, Pages 144–160
DOI: https://doi.org/10.4213/sm8610
Bibliographic databases:
Document Type: Article
UDC: 515.162
Language: English
Original paper language: Russian
Citation: J. Ham, J. Lee, “Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots”, Sb. Math., 207:9 (2016), 1319–1334
Citation in format AMSBIB
\Bibitem{HamLee16}
\by J.~Ham, J.~Lee
\paper Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
\jour Sb. Math.
\yr 2016
\vol 207
\issue 9
\pages 1319--1334
\mathnet{http://mi.mathnet.ru//eng/sm8610}
\crossref{https://doi.org/10.1070/SM8610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588995}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1319H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848300006}
\elib{https://elibrary.ru/item.asp?id=26604195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84995666032}
Linking options:
  • https://www.mathnet.ru/eng/sm8610
  • https://doi.org/10.1070/SM8610
  • https://www.mathnet.ru/eng/sm/v207/i9/p144
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:439
    Russian version PDF:55
    English version PDF:15
    References:45
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024