Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 11, Pages 1665–1702
DOI: https://doi.org/10.1070/SM2004v195n11ABEH000861
(Mi sm861)
 

This article is cited in 13 scientific papers (total in 13 papers)

Birationally rigid varieties with a pencil of Fano double covers. II

A. V. Pukhlikov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The study of the birational geometry of Fano fibrations $\pi\colon V\to\mathbb P^1$ whose fibres are Fano double hypersurfaces of index 1 is continued. Birational rigidity is proved for the majority of families of this type, which do not satisfy the condition of sufficient twistedness over the base (in particular, this means that there exist no other structures of a fibration into rationally connected varieties) and the groups of birational self-maps are computed. The principal components of the method of maximal singularities are considerably improved, chiefly the techniques of counting multiplicities for fibrations $V/\mathbb P^1$ into Fano varieties over the line.
Received: 12.01.2004
Russian version:
Matematicheskii Sbornik, 2004, Volume 195, Number 11, Pages 119–156
DOI: https://doi.org/10.4213/sm861
Bibliographic databases:
Document Type: Article
UDC: 513.6
MSC: 14E05, 14J45
Language: English
Original paper language: Russian
Citation: A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. II”, Mat. Sb., 195:11 (2004), 119–156; Sb. Math., 195:11 (2004), 1665–1702
Citation in format AMSBIB
\Bibitem{Puk04}
\by A.~V.~Pukhlikov
\paper Birationally rigid varieties with a pencil of Fano double covers.~II
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 11
\pages 119--156
\mathnet{http://mi.mathnet.ru/sm861}
\crossref{https://doi.org/10.4213/sm861}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2127462}
\zmath{https://zbmath.org/?q=an:1092.14021}
\elib{https://elibrary.ru/item.asp?id=14286602}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 11
\pages 1665--1702
\crossref{https://doi.org/10.1070/SM2004v195n11ABEH000861}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228585900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744365572}
Linking options:
  • https://www.mathnet.ru/eng/sm861
  • https://doi.org/10.1070/SM2004v195n11ABEH000861
  • https://www.mathnet.ru/eng/sm/v195/i11/p119
    Cycle of papers
    This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:371
    Russian version PDF:171
    English version PDF:8
    References:50
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024