Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 12, Pages 1707–1721
DOI: https://doi.org/10.1070/SM2015v206n12ABEH004510
(Mi sm8557)
 

This article is cited in 14 scientific papers (total in 14 papers)

An analogue of Polya's theorem for piecewise holomorphic functions

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: A well-known result due to Polya for a function given by its holomorphic germ at $z=\infty$ is extended to the case of a piecewise holomorphic function on an arbitrary compact set in $\overline{\mathbb C}$. This result is applied to the problem of the existence of compact sets that have the minimum transfinite diameter in the external field of the logarithmic potential of a negative unit charge among all compact sets such that a certain multivalued analytic function is single-valued and piecewise holomorphic on their complement.
Bibliography: 13 titles.
Keywords: rational approximations, continued fractions, Hankel determinants, Padé approximants.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 16.06.2015 and 21.10.2015
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30C80, 31A15
Language: English
Original paper language: Russian
Citation: V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721
Citation in format AMSBIB
\Bibitem{Bus15}
\by V.~I.~Buslaev
\paper An analogue of Polya's theorem for piecewise holomorphic functions
\jour Sb. Math.
\yr 2015
\vol 206
\issue 12
\pages 1707--1721
\mathnet{http://mi.mathnet.ru//eng/sm8557}
\crossref{https://doi.org/10.1070/SM2015v206n12ABEH004510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438574}
\zmath{https://zbmath.org/?q=an:1406.30010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1707B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000370791500003}
\elib{https://elibrary.ru/item.asp?id=24850635}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959877722}
Linking options:
  • https://www.mathnet.ru/eng/sm8557
  • https://doi.org/10.1070/SM2015v206n12ABEH004510
  • https://www.mathnet.ru/eng/sm/v206/i12/p55
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:557
    Russian version PDF:154
    English version PDF:14
    References:55
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024