Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 8, Pages 1159–1186
DOI: https://doi.org/10.1070/SM8535
(Mi sm8535)
 

This article is cited in 15 scientific papers (total in 15 papers)

Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces

D. V. Prokhorov, V. D. Stepanov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: A precise characterization of inequalities in weighted Lebesgue spaces with positive quasilinear integral operators of iterative type on the half-axis is given. All cases of positive integration parameters are treated, including the case of supremum. Applications to the solution of the well-known problem of the boundedness of the Hardy-Littlewood maximal operator in weighted Lorentz $\Gamma$-spaces are given.
Bibliography: 41 titles.
Keywords: integral operator, weighted inequality, Lebesgue space, Lorentz space.
Funding agency Grant number
Russian Science Foundation 14-11-00443
The work is supported by the Russian Science Foundation (grant no. 14-11-00443).
Received: 29.04.2015
Bibliographic databases:
Document Type: Article
UDC: 517.51+517.98
MSC: Primary 26D15; Secondary 47G10
Language: English
Original paper language: Russian
Citation: D. V. Prokhorov, V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces”, Sb. Math., 207:8 (2016), 1159–1186
Citation in format AMSBIB
\Bibitem{ProSte16}
\by D.~V.~Prokhorov, V.~D.~Stepanov
\paper Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces
\jour Sb. Math.
\yr 2016
\vol 207
\issue 8
\pages 1159--1186
\mathnet{http://mi.mathnet.ru//eng/sm8535}
\crossref{https://doi.org/10.1070/SM8535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535385}
\zmath{https://zbmath.org/?q=an:1365.26022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1159P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848100007}
\elib{https://elibrary.ru/item.asp?id=26414419}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994700587}
Linking options:
  • https://www.mathnet.ru/eng/sm8535
  • https://doi.org/10.1070/SM8535
  • https://www.mathnet.ru/eng/sm/v207/i8/p135
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:586
    Russian version PDF:107
    English version PDF:41
    References:74
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024