Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 7, Pages 942–963
DOI: https://doi.org/10.1070/SM8534
(Mi sm8534)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spectral analysis on the group of conformal automorphisms of the unit disc

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, Ukraine
References:
Abstract: For the group $G$ of conformal automorphisms of the unit disc the problem of spectral analysis is considered for subspaces $\mathscr{U}\subset C(G)$ which are invariant under right shifts by elements of $G$ and conjugations by elements of the rotation subgroup. It turns out that, in contrast to subspaces of $C(G)$ which are merely invariant under right shifts, $\mathscr{U}$ contains a minimal subspace with the above properties.
Bibliography: 26 titles.
Keywords: spectral analysis, conformal automorphism group, invariant subspace, Schwartz theorem.
Received: 29.04.2015 and 02.04.2016
Bibliographic databases:
Document Type: Article
UDC: 517.444
MSC: 43A45
Language: English
Original paper language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Spectral analysis on the group of conformal automorphisms of the unit disc”, Sb. Math., 207:7 (2016), 942–963
Citation in format AMSBIB
\Bibitem{VolVol16}
\by V.~V.~Volchkov, Vit. V. Volchkov
\paper Spectral analysis on the group of conformal automorphisms of the unit disc
\jour Sb. Math.
\yr 2016
\vol 207
\issue 7
\pages 942--963
\mathnet{http://mi.mathnet.ru//eng/sm8534}
\crossref{https://doi.org/10.1070/SM8534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535375}
\zmath{https://zbmath.org/?q=an:1375.43005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..942V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384125200003}
\elib{https://elibrary.ru/item.asp?id=26414408}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84991628124}
Linking options:
  • https://www.mathnet.ru/eng/sm8534
  • https://doi.org/10.1070/SM8534
  • https://www.mathnet.ru/eng/sm/v207/i7/p57
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêèé ñáîðíèê Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:426
    Russian version PDF:45
    English version PDF:16
    References:46
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024