Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 1, Pages 113–139
DOI: https://doi.org/10.1070/SM8520
(Mi sm8520)
 

This article is cited in 5 scientific papers (total in 5 papers)

Topological classification of the Goryachev integrable case in rigid body dynamics

S. S. Nikolaenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics — in other words, the foliations given by the closures of generic solutions of these systems have the same structure.
Bibliography: 15 titles.
Keywords: integrable Hamiltonian system, topological classification, Liouville foliation, Goryachev case, marked molecule.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00664а
Ministry of Education and Science of the Russian Federation НШ-581.2014.1
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 13-01-00664a) and the Programme of the President of the Russian Federation for the Support of Leading Scientific Schools (grant no. НШ-581.2014.1).
Received: 25.03.2015 and 18.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35, 70E40; Secondary 37N10
Language: English
Original paper language: Russian
Citation: S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139
Citation in format AMSBIB
\Bibitem{Nik16}
\by S.~S.~Nikolaenko
\paper Topological classification of the Goryachev integrable case in rigid body dynamics
\jour Sb. Math.
\yr 2016
\vol 207
\issue 1
\pages 113--139
\mathnet{http://mi.mathnet.ru/eng/sm8520}
\crossref{https://doi.org/10.1070/SM8520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462728}
\zmath{https://zbmath.org/?q=an:1347.37106}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..113N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371797300005}
\elib{https://elibrary.ru/item.asp?id=25707804}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963549043}
Linking options:
  • https://www.mathnet.ru/eng/sm8520
  • https://doi.org/10.1070/SM8520
  • https://www.mathnet.ru/eng/sm/v207/i1/p123
  • This publication is cited in the following 5 articles:
    1. I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow University Mathematics Bulletin, 73:2 (2018), 64–70  mathnet  crossref  mathscinet  zmath  isi
    4. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:548
    Russian version PDF:104
    English version PDF:27
    References:87
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025