Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 7, Pages 1010–1036
DOI: https://doi.org/10.1070/SM8509
(Mi sm8509)
 

This article is cited in 14 scientific papers (total in 14 papers)

Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means

I. I. Sharapudinovab

a Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
References:
Abstract: We consider the space $L^{p(\cdot)}_{2\pi}$ formed by $2\pi$-periodic real measurable functions $f$ for which the integral $\displaystyle\int_{-\pi}^{\pi}|f(x)|^{p(x)}\,dx$ exists and is finite, where $p(x)$, $1\leqslant p(x)$, is a $2\pi$-periodic measurable function (a variable exponent). If $p(x)\leqslant \overline p<\infty$, then the space $L^{p(\cdot)}_{2\pi}$ can be endowed with the structure of Banach space with the norm
$$ \|f\|_{p(\cdot)}=\inf\biggl\{\alpha>0:\int_{-\pi}^{\pi}\biggl|\frac{f(x)}{\alpha}\biggr|^{p(x)}\,dx\leqslant1\biggr\}. $$
In the space $L^{p(\cdot)}_{2\pi}$ we distinguish a subspace $W^{r,p(\cdot)}_{2\pi}$ of Sobolev type. We investigate the approximation properties of the de la Vallée-Poussin means for trigonometric Fourier sums for functions in the space $W^{r,p(\cdot)}_{2\pi}$. In particular, we prove that if the variable exponent $p=p(x)$ satisfies the Dini-Lipschitz condition $|p(x)-p(y)|\ln\frac{2\pi}{|x-y|}\leqslant c$ and if $f\in W^{r,p(\cdot)}_{2\pi}$, then the de la Vallée-Poussin means $V_m^n(f)=V_m^n(f,x)$ with $n\leqslant am$ satisfy
$$ \|f-V_m^n(f)\|_{p(\cdot)}\leqslant \frac{c_r(p,a)}{n^r}\Omega\biggl(f^{(r)}, \frac1n\biggr)_{p(\cdot)}, $$
where $\Omega(g,\delta)_{p(\cdot)}$ is a modulus of continuity of the function $g\in L^{p(\cdot)}_{2\pi}$ defined in terms of the Steklov functions. It is proved that if $1<p(x)$, $r\geqslant1$, $f\in W^{r,p(\cdot)}_{2\pi}$ and the Dini-Lipschitz condition holds, then
$$ |f(x)-V_m^n(f,x)|\leqslant\frac{c_r(p)}{m+1}\sum_{k=n}^{n+m}\frac{E_k(f^{(r)})_{p(\cdot)}}{(k+1)^{r-{{1}/{p(x)}}}}, $$
where $E_k(g)_{p(\cdot)}$ stands for the best approximation to $g\in L^{p(\cdot)}_{2\pi}$ by trigonometric polynomials of order $k$.
Bibliography: 19 titles.
Keywords: Lebesgue and Sobolev spaces with variable exponents, approximation of functions by de la Vallée-Poussin means.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486-a
This work was supported by the Russian Foundation for Basic Research (grant no. 16-01-00486-a).
Received: 13.03.2015 and 18.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 42A10; Secondary 46E30, 46E35
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means”, Sb. Math., 207:7 (2016), 1010–1036
Citation in format AMSBIB
\Bibitem{Sha16}
\by I.~I.~Sharapudinov
\paper Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vall\'ee-Poussin means
\jour Sb. Math.
\yr 2016
\vol 207
\issue 7
\pages 1010--1036
\mathnet{http://mi.mathnet.ru//eng/sm8509}
\crossref{https://doi.org/10.1070/SM8509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535378}
\zmath{https://zbmath.org/?q=an:1365.42003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1010S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384125200006}
\elib{https://elibrary.ru/item.asp?id=26414411}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84991669654}
Linking options:
  • https://www.mathnet.ru/eng/sm8509
  • https://doi.org/10.1070/SM8509
  • https://www.mathnet.ru/eng/sm/v207/i7/p131
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024