Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 8, Pages 1123–1149
DOI: https://doi.org/10.1070/SM2015v206n08ABEH004491
(Mi sm8482)
 

This article is cited in 18 scientific papers (total in 18 papers)

Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains

L. M. Kozhevnikovaab, A. A. Khadzhic

a Sterlitamak branch of Bashkir State University
b Elabuga Branch of Kazan State University
c Tyumen State University
References:
Abstract: The paper is concerned with the solvability of the Dirichlet problem for a certain class of anisotropic elliptic second-order equations in divergence form with low-order terms and nonpolynomial nonlinearities
$$ \sum_{\alpha=1}^{n}(a_{\alpha}(x,u,\nabla u))_{x_{\alpha}}-a_0(x,u,\nabla u)=0, \qquad x \in \Omega. $$
The Carathéodory functions $a_{\alpha}(x,s_0,s)$, $\alpha=0,1,\dots,n$, are assumed to satisfy a joint monotonicity condition in the arguments $s_0\in\mathbb{R}$, $s\in\mathbb{R}_n$. Constraints on their growth in $s_0,s$ are formulated in terms of a special class of convex functions. The solvability of the Dirichlet problem in unbounded domains $\Omega\subset \mathbb{R}_n$, $n\geqslant 2$, is investigated. An existence theorem is proved without making any assumptions on the behaviour of the solutions and their growth as $|x|\to \infty$.
Bibliography: 26 titles.
Keywords: anisotropic elliptic equation, nonpolynomial nonlinearities, Orlicz-Sobolev space, existence of a solution, unbounded domain.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00081-a
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 13-01-00081-a).
Received: 26.01.2015 and 19.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.956.25
MSC: 35J47, 35J60
Language: English
Original paper language: Russian
Citation: L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149
Citation in format AMSBIB
\Bibitem{KozKha15}
\by L.~M.~Kozhevnikova, A.~A.~Khadzhi
\paper Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains
\jour Sb. Math.
\yr 2015
\vol 206
\issue 8
\pages 1123--1149
\mathnet{http://mi.mathnet.ru//eng/sm8482}
\crossref{https://doi.org/10.1070/SM2015v206n08ABEH004491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438591}
\zmath{https://zbmath.org/?q=an:1332.35107}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1123K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365315600004}
\elib{https://elibrary.ru/item.asp?id=24073837}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944908360}
Linking options:
  • https://www.mathnet.ru/eng/sm8482
  • https://doi.org/10.1070/SM2015v206n08ABEH004491
  • https://www.mathnet.ru/eng/sm/v206/i8/p99
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:744
    Russian version PDF:200
    English version PDF:18
    References:126
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024