Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 4, Pages 581–589
DOI: https://doi.org/10.1070/SM8471
(Mi sm8471)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a dense winding of the 2-dimensional torus

D. D. Kiselev

All-Russian Academy of International Trade, Moscow
References:
Abstract: An important role in the solution of a class of optimal control problems is played by a certain polynomial of degree $2(n-1)$ of special form with integer coefficients. The linear independence of a family of $k$ special roots of this polynomial over $\mathbb{Q}$ implies the existence of a solution of the original problem with optimal control in the form of a dense winding of a $k$-dimensional Clifford torus, which is traversed in finite time. In this paper, it is proved that for every integer $n>3$ one can take $k$ to be equal to $2$.
Bibliography: 6 titles.
Keywords: optimal control, dense winding, Galois group, linear independence.
Received: 09.01.2015 and 09.10.2015
Bibliographic databases:
Document Type: Book
UDC: 512.623.3+512.622+517.977.5
MSC: Primary 49K15; Secondary 49N10, 93B50
Language: English
Original paper language: Russian
Citation: D. D. Kiselev, “On a dense winding of the 2-dimensional torus”, Sb. Math., 207:4 (2016), 581–589
Citation in format AMSBIB
\Bibitem{Kis16}
\by D.~D.~Kiselev
\paper On a~dense winding of the 2-dimensional torus
\jour Sb. Math.
\yr 2016
\vol 207
\issue 4
\pages 581--589
\mathnet{http://mi.mathnet.ru//eng/sm8471}
\crossref{https://doi.org/10.1070/SM8471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507493}
\zmath{https://zbmath.org/?q=an:1346.49003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..581K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378483100005}
\elib{https://elibrary.ru/item.asp?id=25707827}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976433434}
Linking options:
  • https://www.mathnet.ru/eng/sm8471
  • https://doi.org/10.1070/SM8471
  • https://www.mathnet.ru/eng/sm/v207/i4/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024