Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 5, Pages 678–701
DOI: https://doi.org/10.1070/SM8467
(Mi sm8467)
 

This article is cited in 2 scientific papers (total in 2 papers)

Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna

Ya. M. Dymarskiia, Yu. A. Evtushenkob

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Institute of of Chemical Technologies, Volodymyr Dahl East-Ukrainian National University, Rubezhnoe, Lugansk reg., Ukraine
References:
Abstract: The space of one-dimensional stationary Schrödinger equations with a real-valued periodic potential and periodic boundary conditions is considered. An analytic and topological description of its foliation by hypersurfaces defined by the condition that the $n$th spectral lacuna has fixed length is given. The case when a lacuna degenerates into a point gives the Schwarzian derivative and the Arnold manifold. In the nondegenerate case, the linking number of the loop formed by potentials with shifted argument and an Arnold manifold is calculated.
Bibliography: 12 titles.
Keywords: space of periodic boundary-value problems, spectral lacuna, hypersurface in the space of potentials.
Received: 04.01.2015 and 29.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.927.25+517.988.2
MSC: 34B25, 34L99
Language: English
Original paper language: Russian
Citation: Ya. M. Dymarskii, Yu. A. Evtushenko, “Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna”, Sb. Math., 207:5 (2016), 678–701
Citation in format AMSBIB
\Bibitem{DymEvt16}
\by Ya.~M.~Dymarskii, Yu.~A.~Evtushenko
\paper Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
\jour Sb. Math.
\yr 2016
\vol 207
\issue 5
\pages 678--701
\mathnet{http://mi.mathnet.ru//eng/sm8467}
\crossref{https://doi.org/10.1070/SM8467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507498}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..678D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380765400003}
\elib{https://elibrary.ru/item.asp?id=26414395}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979696691}
Linking options:
  • https://www.mathnet.ru/eng/sm8467
  • https://doi.org/10.1070/SM8467
  • https://www.mathnet.ru/eng/sm/v207/i5/p43
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:63
    English version PDF:13
    References:60
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024