Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 9, Pages 1309–1319
DOI: https://doi.org/10.1070/SM2004v195n09ABEH000846
(Mi sm846)
 

On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field

O. N. Popov

M. V. Lomonosov Moscow State University
References:
Abstract: The author's earlier results on the construction of Cohen–Macaulay modules over a polynomial ring that emerged in the study of Cauchy–Fueter equations and was generalized by him from the quaternions to arbitrary finite-dimensional associative algebras are extended to the case of algebras over a non-perfect field. Namely, it is proved that for maximally central algebras (introduced by Azumaya) the resulting modules are Cohen–Macaulay, this construction has other good properties, and this class cannot be enlarged. The calculations of various invariants of the resulting modules in the case of a perfect field remain valid.
Received: 15.10.2003
Bibliographic databases:
UDC: 512.715/.717+512.552.22
MSC: Primary 13C14, 16G10; Secondary 13B25
Language: English
Original paper language: Russian
Citation: O. N. Popov, “On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field”, Sb. Math., 195:9 (2004), 1309–1319
Citation in format AMSBIB
\Bibitem{Pop04}
\by O.~N.~Popov
\paper On~modules over a~polynomial ring obtained from representations of finite-dimensional associative algebras. II.~The case of a~non-perfect field
\jour Sb. Math.
\yr 2004
\vol 195
\issue 9
\pages 1309--1319
\mathnet{http://mi.mathnet.ru//eng/sm846}
\crossref{https://doi.org/10.1070/SM2004v195n09ABEH000846}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2122370}
\zmath{https://zbmath.org/?q=an:1109.16013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226336000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-12144280245}
Linking options:
  • https://www.mathnet.ru/eng/sm846
  • https://doi.org/10.1070/SM2004v195n09ABEH000846
  • https://www.mathnet.ru/eng/sm/v195/i9/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024